Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease affecting -1,000,000 Americans. PD begins about the 6* decade with onset of bradykinesia, rigidity, and resting tremor. In addition, non-motor symptoms occur at any stage of PD, and >80% of PD patients develop dementia (PDD) with disease progression. Cognitive impairment (CI), executive dysfunction and dementia add to the burden of PD and increase mortality, but the underlying basis of dementia in PD is unclear, and there are no effective disease modifying therapies. Despite significant research advances, the exact causes of PD/PDD/DLB are unknown. To address these issues, a National Institute of Neurological Disorders and Stroke Morris K. Udall Parkinson's Disease Research Center of Excellence (Udall Center) was launched at the Perelman School of Medicine (Penn) of the University of Pennsylvania in 2007. The competing renewal for years 6-10 of the Penn Udall Center builds on its recent progress to elucidate the progression of PD from normal cognition to cognitive impairment (CI), executive dysfunction and dementia in PDD, as well as disease progression in DLB in addition to the central nervous system (CNS) degeneration mediated by progressive accumulations of pathological alpha-synuclein (a-syn). Because recent Penn Udall Center studies raise the provocative, but highly plausible possibility that the progression of PD/PDD/DLB is linked to the cell-to-cell spread of pathological a-syn, the overarching goals of the Penn Udall Center are to elucidate mechanisms of disease progression and a-syn transmission through synergistic collaborations between basic and translational research Projects that work with each of the Cores to implement the mission of the Penn Udall Center in the renewal period. To that end, the Udall Center renewal will implement the following Cores and Projects: Administrative Core A: Core Leaer (CL) - J.Q. Trojanowski;Clinical Core B: CL - H. Hurtig;Co-CL - A Siderowf;Neuropathology, Biomarker and Genetics Core C: CL - J.Q. Trojanowski;Co- CL - y. Van Deerlin;Co-Investigator (Col) - EB. Lee;Data Management, Biostatistics and Bioinformatics Core D: CL - S. Xie;Co-I - Li-San Wang;Project I: """"""""A Multimodal Biomarker Approach to Evaluating and Predicting Cognitive Decline in Lewy Body Spectrum Disorders"""""""": Project Leader (PL) - A. Siderowf;Co-I - A. Chen-Plotkin;Project II: """"""""Mechanisms Of PD Executive Dysfunction In Language"""""""": PL - M. Grossman;Co-I - R. Gross;Project III: """"""""Mechanisms Of Transmission Of Pathological Alpha-synuclein In Neurons"""""""": PL - V.M.-Y. Lee;Project IV: """"""""Immune Therapy To Block PD Transmission In Mice"""""""": PL - J.Q. Trojanowski;Co-I - V.M.-Y. Lee and Kelvin Luk.

Public Health Relevance

of the Penn Udall Center is that it elucidates mechanisms of CI, executive dysfunction and dementia in PD/PDD/DLB as well as mechanisms of neurodegeneration in these disorders mediated by the transmission of a-syn pathologies. By using new approaches and model systems to achieve its goals, the Penn Udall Center will elucidate novel disease mechanisms in PD/PDD/DLB and advance efforts to develop new interventions and better diagnostics for these disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Specialized Center (P50)
Project #
3P50NS053488-07S1
Application #
8756218
Study Section
Program Officer
Sieber, Beth-Anne
Project Start
2013-11-01
Project End
2014-06-30
Budget Start
2013-11-01
Budget End
2014-06-30
Support Year
7
Fiscal Year
2014
Total Cost
$2,500
Indirect Cost
Name
University of Pennsylvania
Department
Pathology
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Olm, Christopher A; McMillan, Corey T; Irwin, David J et al. (2018) Longitudinal structural gray matter and white matter MRI changes in presymptomatic progranulin mutation carriers. Neuroimage Clin 19:497-506
Sandelius, Åsa; Portelius, Erik; Källén, Åsa et al. (2018) Elevated CSF GAP-43 is Alzheimer's disease specific and associated with tau and amyloid pathology. Alzheimers Dement :
Henderson, Michael X; Peng, Chao; Trojanowski, John Q et al. (2018) LRRK2 activity does not dramatically alter ?-synuclein pathology in primary neurons. Acta Neuropathol Commun 6:45
Chahine, L M; Dos Santos, C; Fullard, M et al. (2018) Modifiable vascular risk factors, white matter disease and cognition in early Parkinson's disease. Eur J Neurol :
Cousins, Katheryn A Q; Ash, Sharon; Grossman, Murray (2018) Production of verbs related to body movement in amyotrophic lateral sclerosis (ALS) and Parkinson's Disease (PD). Cortex 100:127-139
Guerreiro, Rita; Ross, Owen A; Kun-Rodrigues, Celia et al. (2018) Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study. Lancet Neurol 17:64-74
Shi, Min; Tang, Lu; Toledo, Jon B et al. (2018) Cerebrospinal fluid ?-synuclein contributes to the differential diagnosis of Alzheimer's disease. Alzheimers Dement 14:1052-1062
Tropea, Thomas F; Xie, Sharon X; Rick, Jacqueline et al. (2018) APOE, thought disorder, and SPARE-AD predict cognitive decline in established Parkinson's disease. Mov Disord 33:289-297
Portelius, Erik; Olsson, Bob; Höglund, Kina et al. (2018) Cerebrospinal fluid neurogranin concentration in neurodegeneration: relation to clinical phenotypes and neuropathology. Acta Neuropathol 136:363-376
Polinski, Nicole K; Volpicelli-Daley, Laura A; Sortwell, Caryl E et al. (2018) Best Practices for Generating and Using Alpha-Synuclein Pre-Formed Fibrils to Model Parkinson's Disease in Rodents. J Parkinsons Dis 8:303-322

Showing the most recent 10 out of 339 publications