SARS-CoV-2 continues to spread across the globe at an exponential rate with increasing numbers of patients in the hospital. Due to the rapid spread, much remains to be understood about viral pathogenesis and host immune response to infection. Immunological features of COVID-19 progression include a robust pro- inflammatory response driven by innate and adaptive immune cells. Importantly, very recent studies suggest that deficiency in type-I interferon (IFN) signaling is associated with life-threatening COVID-19 outcomes in previously healthy individuals. Establishment of a non-human primate model of severe SARS-CoV-2 infection could prove essential for understanding SARS-CoV-2 pathogenesis and for preclinical testing of candidate antiviral agents and immune modulators able to reduce the extent of viral replication and the excessive inflammation. Herein, we are proposing extensive and state-of-the-art immunologic analyses in SARS-CoV-2 infected rhesus macaques (RMs) to identify markers of inflammation and disease severity that can be used to develop a standardized and robust RM/NHP model of COVID-19 (Aim #1). Furthermore, we will block, specifically and directly in vivo, type- I IFN responses in SARS-CoV-2-infected RMs (Aim #2) via administration of a type-I IFN antagonist (IFN-I ant). This intervention will elucidate the roles of type-I IFN in protecting the host from severe COVID-19 progression and investigate if a short-term IFN-I ant treatment can establish a severe and reproducible NHP COVID-19 model. Additionally, specimens collected longitudinally and at necropsy will be cryo-banked to be shared and used among the COVTEN consortium for validation of established SOPs as well as for addressing additional questions related to COVID-19 inflammation and pathogenesis. The advantage of tracking pathogenesis, immune responses, and viral replication longitudinally, including very early after infection, and across multiple tissues, including lung, heart, and brain, will allow us to address our critical questions with a depth and rigor that is virtually impossible to achieve in humans. These achievements will provide key insights into the mechanisms of SARS-CoV-2 pathogenesis, and will deliver a robust NHP model for prioritizing and accelerating the development of the most promising candidate therapeutics. This study will cross-validate COVTEN SOPs and establish a robust model to be utilized by the ACTIV consortium.

Public Health Relevance

Given the global impetus to develop therapeutics able to reduce COVID-19 morbidity and mortality, we are proposing a series of rigorous and highly controlled studied in SARS-CoV-2 infected rhesus macaques to (i) identify signatures of inflammation and disease severity; (ii) elucidate the role of type-I IFN in protection from severe COVID-19; and (iii) block type-I IFN responses to establish a severe and reproducible NHP COVID-19 model.

Agency
National Institute of Health (NIH)
Institute
Office of The Director, National Institutes of Health (OD)
Type
Primate Research Center Grants (P51)
Project #
3P51OD011132-60S4
Application #
10321484
Study Section
Program Officer
Hild, Sheri Ann
Project Start
2020-12-23
Project End
2021-04-30
Budget Start
2021-03-01
Budget End
2021-04-30
Support Year
60
Fiscal Year
2021
Total Cost
Indirect Cost
Name
Emory University
Department
Type
Schools of Medicine
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Merino, Paola; Yepes, Manuel (2018) Urokinase-type Plasminogen Activator Induces Neurorepair in the Ischemic Brain. J Neurol Exp Neurosci 4:24-29
Stavisky, Ronda C; Ramsey, Jacklyn K; Meeker, Tracy et al. (2018) Trauma rates and patterns in specific pathogen free (SPF) rhesus macaque (Macaca mulatta) groups. Am J Primatol 80:e22742
Li, Chun-Xia; Kempf, Doty J; Tong, Frank C et al. (2018) Longitudinal MRI Evaluation of Ischemic Stroke in the Basal Ganglia of a Rhesus Macaque (Macaca mulatta) with Seizures. Comp Med :
Bosch, Oliver J; Pohl, Tobias T; Neumann, Inga D et al. (2018) Abandoned prairie vole mothers show normal maternal care but altered emotionality: Potential influence of the brain corticotropin-releasing factor system. Behav Brain Res 341:114-121
Eckstein, Monika; Bamert, Vera; Stephens, Shannon et al. (2018) Oxytocin increases eye-gaze towards novel social and non-social stimuli. Soc Neurosci :1-14
Tedesco, Dana; Thapa, Manoj; Chin, Chui Yoke et al. (2018) Alterations in Intestinal Microbiota Lead to Production of Interleukin 17 by Intrahepatic ?? T-Cell Receptor-Positive Cells and Pathogenesis of Cholestatic Liver Disease. Gastroenterology 154:2178-2193
Dave, Rajnish S; Sharma, Ravi K; Muir, Roshell R et al. (2018) FDC:TFH Interactions within Cervical Lymph Nodes of SIV-Infected Rhesus Macaques. J Neuroimmune Pharmacol 13:204-218
Gumber, Sanjeev; Amancha, Praveen Kumar; Yen, Po-Jen et al. (2018) In vivo characterization of macrophage-tropic simian immunodeficiency virus molecular clones in rhesus macaques. J Neurovirol 24:411-419
Mudd, Joseph C; Busman-Sahay, Kathleen; DiNapoli, Sarah R et al. (2018) Hallmarks of primate lentiviral immunodeficiency infection recapitulate loss of innate lymphoid cells. Nat Commun 9:3967
Smith, Yoland; Galvan, Adriana (2018) Non-human primate research of basal ganglia and movement disorders: advances and challenges. J Neural Transm (Vienna) 125:275-278

Showing the most recent 10 out of 810 publications