The objective of grant P51-OD011133 to Texas Biomedical Research Institute is to continue support of the infrastructure of the Southwest National Primate Research Center (SNPRC). This base grant enables the SNPRC to be responsive to national biomedical research needs and to accommodate investigators who want to access Center resources for collaborative research purposes. The Southwest National Primate Research Center has an active and growing program to develop and supply the common marmoset (Callithrix jacchus) as a biomedical research resource. We propose to further enhance this SNPRC resource through the inclusion of a segment of the marmoset colony from the New England Primate Research Center. This addition will provide SNPRC with two genetically distinct colonies of marmosets that can be utilized for infectious disease, metabolic disease, aging and regenerative medicine research. This revised proposal requests support for this activity. The overall aims of the marmoset colony in the last competitive renewal were to: (1) continue production of marmosets for use in biomedical research; (2) further consortium arrangements with Wisconsin NPRC, New England PRC and the NIH Intra-mural program. Two specific goals within this aim are to have a defined, accepted profile of a marmoset diet and a SNP panel that can be used as a tool to define best animal use and animal breeding; (3) continue comparison of the SPF, barrier-maintained marmoset colony with the conventionally housed colonies, in order to identify those aspects of research use (e.g., healthy longevity) which will specifically benefit from this SPF, barrier approach to colony management and animal production. The following revised additional aims are proposed with the addition of the NEPRC marmosets to the SNPRC: (1) continue production of marmosets for use in biomedical research with the NEPRC marmosets contributing to that continued production. The NEPRC marmosets will be maintained as a separate population (hereafter referred to as Colony 2), with husbandry and diet maintained as closely as possible to the original NEPRC protocols. The increased size of the total colony will greatly enhance our ability to meet the needs of NIH- funded investigators, some of which used the marmoset model at NEPRC; (2) conduct planned comparisons of factors that represent important sources underlying phenotypic variation within and among marmoset populations. These comparisons will provide a means to identify best practices as regards to husbandry and best methods for assigning subjects to studies or breeding in relation to genetic variation.
This aim will be conducted in collaboration with the Wisconsin NPRC; (3) establish a specific resource of geriatric marmosets to be used in studies of aging and chronic disease.

Public Health Relevance

The Southwest National Primate Research Center (SNPRC) facilitates innovative biomedical research that advances human health through provision of nonhuman primate-related resources to investigators from around the country. The SNPRC maintains colonies of baboons, macaques, marmosets, and chimpanzees for support of biomedical research projects. The Center also has internal research efforts focused on genomics, metabolic disease, infectious disease, and behavior. The marmoset resources of the SNPRC have supported basic and translational research in infectious diseases, regenerative medicine, obesity and aging.

Agency
National Institute of Health (NIH)
Institute
Office of The Director, National Institutes of Health (OD)
Type
Primate Research Center Grants (P51)
Project #
3P51OD011133-17S1
Application #
8999080
Study Section
Special Emphasis Panel (ZRG1-BBBP-T (46))
Program Officer
Harding, John D
Project Start
1999-06-06
Project End
2016-04-30
Budget Start
2015-09-07
Budget End
2016-04-30
Support Year
17
Fiscal Year
2015
Total Cost
$318,655
Indirect Cost
$140,237
Name
Texas Biomedical Research Institute
Department
Type
DUNS #
007936834
City
San Antonio
State
TX
Country
United States
Zip Code
78245
Lutz, Corrine K (2018) A cross-species comparison of abnormal behavior in three species of singly-housed old world monkeys. Appl Anim Behav Sci 199:52-58
Almodovar, Sharilyn; Swanson, Jessica; Giavedoni, Luis D et al. (2018) Lung Vascular Remodeling, Cardiac Hypertrophy, and Inflammatory Cytokines in SHIVnef-Infected Macaques. Viral Immunol 31:206-222
Koistinen, Keith; Mullaney, Lisa; Bell, Todd et al. (2018) Coccidioidomycosis in Nonhuman Primates: Pathologic and Clinical Findings. Vet Pathol 55:905-915
Mahaney, Michael C; Karere, Genesio M; Rainwater, David L et al. (2018) Diet-induced early-stage atherosclerosis in baboons: Lipoproteins, atherogenesis, and arterial compliance. J Med Primatol 47:3-17
Mangosing, Sara; Perminov, Ekaterina; Gonzalez, Olga et al. (2018) Uterine Tumors Resembling Ovarian Sex Cord Tumors in Four Baboons ( Papio spp.). Vet Pathol 55:753-758
Lutz, Corrine K; Brown, Tara A (2018) Porches as Enrichment for Singly Housed Cynomolgus Macaques (Macaca fascicularis). J Am Assoc Lab Anim Sci 57:134-137
Rosa, Marcello G P; Soares, Juliana G M; Chaplin, Tristan A et al. (2018) Cortical Afferents of Area 10 in Cebus Monkeys: Implications for the Evolution of the Frontal Pole. Cereb Cortex :
Callaway, Danielle A; McGill-Vargas, Lisa L; Quinn, Amy et al. (2018) Prematurity disrupts glomeruli development, whereas prematurity and hyperglycemia lead to altered nephron maturation and increased oxidative stress in newborn baboons. Pediatr Res 83:702-711
Kuo, Anderson H; Li, Cun; Huber, Hillary F et al. (2018) Ageing changes in biventricular cardiac function in male and female baboons (Papio spp.). J Physiol 596:5083-5098
Niedenberger, Bryan A; Cook, Kenneth; Baena, Valentina et al. (2018) Dynamic cytoplasmic projections connect mammalian spermatogonia in vivo. Development 145:

Showing the most recent 10 out of 294 publications