This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. West Nile virus has become an increasing public health concern in the United States since its appearance in New York City in 1999. In order to gain a better understanding of the interaction of this virus with the infected host cell, we have performed gene microarray studies on WNV infected cells. The results of these studies suggested that the src-family kinase c-Yes may play a role in WNV infection. In agreement with this hypothesis, addition of the src-family kinase inhibitors PP2 and SU6656 to infected cells resulted in a 10-20 fold decrease in the amount of virus recovered in the culture supernatant 20 h after drug addition, and a rapid decrease of cell associated infectious virus soon (4 h) after drug addition. Interestingly, drug treatment does not result in a corresponding decrease in the amount of viral RNA within the infected cell, suggesting that c-Yes, or other src kinases, do not act on viral RNA replication, but at a later stage in the viral life cycle. Specific inhibition of c-Yes in an siRNA mediated 'knock-down' experiment also resulted in a decrease in recovered virus, indicating that c-Yes is indeed involved in WNV replication, although a role for other members of the src family cannot be excluded.
The aim of this proposal is to extend these studies to determine what members of the src kinases, other than c-Yes, are also involved in WNV replication, where in the viral life cycle the effect of c-Yes is exerted, and what substrates, viral or cellular, are phosphorylated by the kinase during infection.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Primate Research Center Grants (P51)
Project #
5P51RR000163-47
Application #
7348932
Study Section
Special Emphasis Panel (ZRR1-CM-8 (01))
Project Start
2006-05-01
Project End
2007-04-30
Budget Start
2006-05-01
Budget End
2007-04-30
Support Year
47
Fiscal Year
2006
Total Cost
$76,828
Indirect Cost
Name
Oregon Health and Science University
Department
Type
Schools of Medicine
DUNS #
096997515
City
Portland
State
OR
Country
United States
Zip Code
97239
Okoye, Afam A; Hansen, Scott G; Vaidya, Mukta et al. (2018) Early antiretroviral therapy limits SIV reservoir establishment to delay or prevent post-treatment viral rebound. Nat Med 24:1430-1440
Jensen, Jeffrey T; Hanna, Carol; Mishler, Emily et al. (2018) Effect of menstrual cycle phase and hormonal treatments on evaluation of tubal patency in baboons. J Med Primatol 47:40-45
Toro, C A; Aylwin, C F; Lomniczi, A (2018) Hypothalamic epigenetics driving female puberty. J Neuroendocrinol 30:e12589
Bulgarelli, Daiane L; Ting, Alison Y; Gordon, Brenda J et al. (2018) Development of macaque secondary follicles exposed to neutral red prior to 3-dimensional culture. J Assist Reprod Genet 35:71-79
Prola-Netto, Joao; Woods, Mark; Roberts, Victoria H J et al. (2018) Gadolinium Chelate Safety in Pregnancy: Barely Detectable Gadolinium Levels in the Juvenile Nonhuman Primate after in Utero Exposure. Radiology 286:122-128
Moccetti, Federico; Brown, Eran; Xie, Aris et al. (2018) Myocardial Infarction Produces Sustained Proinflammatory Endothelial Activation in Remote Arteries. J Am Coll Cardiol 72:1015-1026
Blue, Steven W; Winchell, Andrea J; Kaucher, Amy V et al. (2018) Simultaneous quantitation of multiple contraceptive hormones in human serum by LC-MS/MS. Contraception 97:363-369
Jeon, Sookyoung; Li, Qiyao; Rubakhin, Stanislav S et al. (2018) 13C-lutein is differentially distributed in tissues of an adult female rhesus macaque following a single oral administration: a pilot study. Nutr Res :
Slayden, Ov Daniel; Friason, Francis Kathryn E; Bond, Kise Rosen et al. (2018) Hormonal regulation of oviductal glycoprotein 1 (OVGP1; MUC9) in the rhesus macaque cervix. J Med Primatol 47:362-370
Dissen, G A; Adachi, K; Lomniczi, A et al. (2017) Engineering a gene silencing viral construct that targets the cat hypothalamus to induce permanent sterility: An update. Reprod Domest Anim 52 Suppl 2:354-358

Showing the most recent 10 out of 492 publications