This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.The long-term goal of this project is to determine the role of viral pathogens in the development of vascular diseases such as atherosclerosis, restenosis, and transplant vascular sclerosis (TVS). All of these diseases are the result of either mechanical or immune-mediated injury followed by inflammation and subsequent smooth muscle cell (SMC) proliferation and migration from the vessel media to the intima, which culminates in vessel narrowing. Besides SMC, the other key cells in this process are monocyte-derived macrophages (MDM) and endothelial cells. Clinical studies have directly associated human cytomegalovirus (HCMV) with the acceleration of TVS and vascular restenosis following angioplasty as well as atherosclerosis. However, the mechanism(s) involved in the acceleration of vascular disease by HCMV is unknown. Studies by our group and others have shown that CMV can accelerate atherosclerosis in mouse models. In addition, we have shown that chemokine receptors encoded by CMV not only induce SMC migration but also decrease the incidence and severity of atherosclerosis when deleted from the virus. Chemokine receptors are known to play an important role in the development of vasculopathies and we hypothesize that the CMV chemokine receptors are integral in the acceleration of this disease process. In the previous funding period, we have identified unique components of HCMV US28 G-protein coupled receptor (GPCR) signaling pathway that results in SMC migration that is cell specific. Additionally, although US28 binds multiple chemokines, we have observed functional differences between chemokines that bind the viral GPCR. We have also demonstrated that the mouse CMV encoded chemokine receptor M33 is a functional US28 homologue. Recently, we have developed a mouse heart transplantation model of TVS that exhibits all of the hallmarks of human disease. We have also shown that MCMV accelerates the progression and severity of TVS in these mice. The MCMV heart transplant model offers a unique system to quantitatively assess the mechanisms of virus-accelerated vasculopathy using both viral and mouse genetics. Therefore, in this project we will use the in vitro and in vivo systems that we have established over the previous funding period to elucidate the role of CMV chemokine receptors in virus accelerated vasculopathy.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Primate Research Center Grants (P51)
Project #
5P51RR000163-49
Application #
7715996
Study Section
Special Emphasis Panel (ZRR1-CM-8 (01))
Project Start
2008-05-01
Project End
2009-04-30
Budget Start
2008-05-01
Budget End
2009-04-30
Support Year
49
Fiscal Year
2008
Total Cost
$55,512
Indirect Cost
Name
Oregon Health and Science University
Department
Type
Schools of Medicine
DUNS #
096997515
City
Portland
State
OR
Country
United States
Zip Code
97239
Okoye, Afam A; Hansen, Scott G; Vaidya, Mukta et al. (2018) Early antiretroviral therapy limits SIV reservoir establishment to delay or prevent post-treatment viral rebound. Nat Med 24:1430-1440
Jensen, Jeffrey T; Hanna, Carol; Mishler, Emily et al. (2018) Effect of menstrual cycle phase and hormonal treatments on evaluation of tubal patency in baboons. J Med Primatol 47:40-45
Toro, C A; Aylwin, C F; Lomniczi, A (2018) Hypothalamic epigenetics driving female puberty. J Neuroendocrinol 30:e12589
Bulgarelli, Daiane L; Ting, Alison Y; Gordon, Brenda J et al. (2018) Development of macaque secondary follicles exposed to neutral red prior to 3-dimensional culture. J Assist Reprod Genet 35:71-79
Prola-Netto, Joao; Woods, Mark; Roberts, Victoria H J et al. (2018) Gadolinium Chelate Safety in Pregnancy: Barely Detectable Gadolinium Levels in the Juvenile Nonhuman Primate after in Utero Exposure. Radiology 286:122-128
Moccetti, Federico; Brown, Eran; Xie, Aris et al. (2018) Myocardial Infarction Produces Sustained Proinflammatory Endothelial Activation in Remote Arteries. J Am Coll Cardiol 72:1015-1026
Blue, Steven W; Winchell, Andrea J; Kaucher, Amy V et al. (2018) Simultaneous quantitation of multiple contraceptive hormones in human serum by LC-MS/MS. Contraception 97:363-369
Jeon, Sookyoung; Li, Qiyao; Rubakhin, Stanislav S et al. (2018) 13C-lutein is differentially distributed in tissues of an adult female rhesus macaque following a single oral administration: a pilot study. Nutr Res :
Slayden, Ov Daniel; Friason, Francis Kathryn E; Bond, Kise Rosen et al. (2018) Hormonal regulation of oviductal glycoprotein 1 (OVGP1; MUC9) in the rhesus macaque cervix. J Med Primatol 47:362-370
Dissen, G A; Adachi, K; Lomniczi, A et al. (2017) Engineering a gene silencing viral construct that targets the cat hypothalamus to induce permanent sterility: An update. Reprod Domest Anim 52 Suppl 2:354-358

Showing the most recent 10 out of 492 publications