Several recent studies have demonstrated that central oxytocin and vasopressin pathways are important for species typical social behaviors in rodents. This proposal extends this work to non-human primates by investigating oxytocin and vasopressin in both normal and socially abnormal rhesus monkeys. Proposed studies will characterize the social and cognitive deficits in these monkeys, investigate the influence of centrally administered agonists and antagonists, and in post-mortem studies, assess oxytocin and vasopressin function with cellular and molecular techniques. As many of the behavioral deficits in these socially abnormal monkeys resemble the core features of autism and the deficit syndrome of schizophrenia, the results from the proposed studies may provide pathophysiologic insights and novel medications for these treatment-refractory syndromes. We have recently completed a series of studies of face recognition by rhesus monkeys using the computer assisted paradigm developed with Lisa Parr and Bill Hopkins. We have recently received notice of the successful application for funding for further studies of this topic from NIMH. Animals for these studies will be recruited this year. FUNDING Yerkes / Venture $20,000 1/01/98 - 12/31/99 PUBLICATIONS None

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Primate Research Center Grants (P51)
Project #
5P51RR000165-39
Application #
6288142
Study Section
Project Start
1999-05-01
Project End
2000-04-30
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
39
Fiscal Year
1999
Total Cost
Indirect Cost
Name
Emory University
Department
Type
DUNS #
042250712
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Claw, Katrina G; George, Renee D; MacCoss, Michael J et al. (2018) Quantitative evolutionary proteomics of seminal fluid from primates with different mating systems. BMC Genomics 19:488
Adekambi, Toidi; Ibegbu, Chris C; Cagle, Stephanie et al. (2018) High Frequencies of Caspase-3 Expressing Mycobacterium tuberculosis-Specific CD4+ T Cells Are Associated With Active Tuberculosis. Front Immunol 9:1481
Beck, Goichi; Maehara, Shunsuke; Chang, Phat Ly et al. (2018) A Selective Phosphodiesterase 10A Inhibitor Reduces L-Dopa-Induced Dyskinesias in Parkinsonian Monkeys. Mov Disord 33:805-814
Georgieva, Maria; Sia, Jonathan Kevin; Bizzell, Erica et al. (2018) Mycobacterium tuberculosis GroEL2 Modulates Dendritic Cell Responses. Infect Immun 86:
Tedesco, Dana; Grakoui, Arash (2018) Environmental peer pressure: CD4+ T cell help in tolerance and transplantation. Liver Transpl 24:89-97
Mavigner, Maud; Habib, Jakob; Deleage, Claire et al. (2018) Simian Immunodeficiency Virus Persistence in Cellular and Anatomic Reservoirs in Antiretroviral Therapy-Suppressed Infant Rhesus Macaques. J Virol 92:
Walker, Lary C (2018) Prion-like mechanisms in Alzheimer disease. Handb Clin Neurol 153:303-319
Kamberov, Yana G; Guhan, Samantha M; DeMarchis, Alessandra et al. (2018) Comparative evidence for the independent evolution of hair and sweat gland traits in primates. J Hum Evol 125:99-105
Wakeford, Alison G P; Morin, Elyse L; Bramlett, Sara N et al. (2018) A review of nonhuman primate models of early life stress and adolescent drug abuse. Neurobiol Stress 9:188-198
Singh, Arun; Jenkins, Meagan A; Burke Jr, Kenneth J et al. (2018) Glutamatergic Tuning of Hyperactive Striatal Projection Neurons Controls the Motor Response to Dopamine Replacement in Parkinsonian Primates. Cell Rep 22:941-952

Showing the most recent 10 out of 912 publications