This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Tamoxifen use for the prevention and treatment of breast cancer can have adverse emotional side-effects increasing the incidence of hot flashes and reducing feelings of emotional well being. Although treatment with anti-depressant medications, specifically serotonin reuptake inhibitors or SSRIs, could relieve these symptoms certain SSRIs may diminish the biological efficacy of tamoxifen by altering enzymes that change the metabolism of tamoxifen into its less active forms. We have been using adult female rhesus monkeys to study how two SSRIs, paroxetine and citalopram, differentially affect the metabolism of tamoxifen and how these medications affect the anxiety producing effects of tamoxifen. The analyses of the data thus far indicate that paroxetine but not citalopram changes the metabolism of tamoxifen to its less biologically active forms. Importantly, indices of anxiety were CO-INV: attenuated during treatment with either anti-anxiety medications. Although these data are preliminary, they suggest that citalopram may have beneficial effects on behavior without affecting tamoxifen' s cancer fighting activity.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Primate Research Center Grants (P51)
Project #
2P51RR000165-46
Application #
7349244
Study Section
Special Emphasis Panel (ZRR1-CM-8 (01))
Project Start
2006-06-09
Project End
2007-04-30
Budget Start
2006-06-09
Budget End
2007-04-30
Support Year
46
Fiscal Year
2006
Total Cost
$40,116
Indirect Cost
Name
Emory University
Department
Otolaryngology
Type
Schools of Medicine
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Fonseca, Jairo A; McCaffery, Jessica N; Caceres, Juan et al. (2018) Inclusion of the murine IgG? signal peptide increases the cellular immunogenicity of a simian adenoviral vectored Plasmodium vivax multistage vaccine. Vaccine 36:2799-2808
Tedesco, Dana; Thapa, Manoj; Chin, Chui Yoke et al. (2018) Alterations in Intestinal Microbiota Lead to Production of Interleukin 17 by Intrahepatic ?? T-Cell Receptor-Positive Cells and Pathogenesis of Cholestatic Liver Disease. Gastroenterology 154:2178-2193
Robinson, Amy A; Abraham, Carmela R; Rosene, Douglas L (2018) Candidate molecular pathways of white matter vulnerability in the brain of normal aging rhesus monkeys. Geroscience 40:31-47
Walker, Lary C (2018) Sabotage by the brain's supporting cells helps fuel neurodegeneration. Nature 557:499-500
Mascaro, Jennifer S; Rentscher, Kelly E; Hackett, Patrick D et al. (2018) Preliminary evidence that androgen signaling is correlated with men's everyday language. Am J Hum Biol 30:e23136
Forger, Nancy G; Ruszkowski, Elara; Jacobs, Andrew et al. (2018) Effects of sex and prenatal androgen manipulations on Onuf's nucleus of rhesus macaques. Horm Behav 100:39-46
Claw, Katrina G; George, Renee D; MacCoss, Michael J et al. (2018) Quantitative evolutionary proteomics of seminal fluid from primates with different mating systems. BMC Genomics 19:488
Adekambi, Toidi; Ibegbu, Chris C; Cagle, Stephanie et al. (2018) High Frequencies of Caspase-3 Expressing Mycobacterium tuberculosis-Specific CD4+ T Cells Are Associated With Active Tuberculosis. Front Immunol 9:1481
Beck, Goichi; Maehara, Shunsuke; Chang, Phat Ly et al. (2018) A Selective Phosphodiesterase 10A Inhibitor Reduces L-Dopa-Induced Dyskinesias in Parkinsonian Monkeys. Mov Disord 33:805-814
Georgieva, Maria; Sia, Jonathan Kevin; Bizzell, Erica et al. (2018) Mycobacterium tuberculosis GroEL2 Modulates Dendritic Cell Responses. Infect Immun 86:

Showing the most recent 10 out of 912 publications