This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.The development of effective medications to treat cocaine addiction will depend on a better understanding of cocaine neuropharmacology. The current project utilized positron emission tomography (PET) neuroimaging techniques in nonhuman primates as a noninvasive approach to investigate cocaine-induced functional changes in central nervous system activity. We have completed an extensive series of studies to compare the discriminative-stimulus, reinforcing and reinstatement effects of cocaine analogs with high affinity for binding to the dopamine transporter (DAT). Moreover, the behavioral pharmacology of the cocaine analogs was compared to their time course of uptake in brain using PET neuroimaging. Compounds were labeled with C-11, and PET imaging on a high-resolution MicroPET scanner was used to document the rate of uptake and clearance from brain in vivo in rhesus monkeys. All of the DAT inhibitors substituted for cocaine in drug-disrimination studies. Moreover, there was a significant correlation between the time course of discriminative-stimulus effects and the time to reach peak drug levels in brain measured by PET. There was also a significant correlation in the rank order of potency of the cocaine analogs in behavioral assays of drug-discrimination, drug self-administra tion and reinstatement effects. Hence the time course of uptake in brain predicts the behavioral pharmacology of DAT inhibitors in nonhuman primates. The results have important implication concerning the development of substitute agonist pharmacotherapies to treat stimulant abuse. Slow-onset, long-duration medications may enhance medication effectiveness and further limit the abuse potential of the medication.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Primate Research Center Grants (P51)
Project #
5P51RR000165-47
Application #
7562500
Study Section
Special Emphasis Panel (ZRR1-CM-8 (01))
Project Start
2007-05-01
Project End
2008-04-30
Budget Start
2007-05-01
Budget End
2008-04-30
Support Year
47
Fiscal Year
2007
Total Cost
$39,497
Indirect Cost
Name
Emory University
Department
Otolaryngology
Type
Schools of Medicine
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Claw, Katrina G; George, Renee D; MacCoss, Michael J et al. (2018) Quantitative evolutionary proteomics of seminal fluid from primates with different mating systems. BMC Genomics 19:488
Adekambi, Toidi; Ibegbu, Chris C; Cagle, Stephanie et al. (2018) High Frequencies of Caspase-3 Expressing Mycobacterium tuberculosis-Specific CD4+ T Cells Are Associated With Active Tuberculosis. Front Immunol 9:1481
Beck, Goichi; Maehara, Shunsuke; Chang, Phat Ly et al. (2018) A Selective Phosphodiesterase 10A Inhibitor Reduces L-Dopa-Induced Dyskinesias in Parkinsonian Monkeys. Mov Disord 33:805-814
Georgieva, Maria; Sia, Jonathan Kevin; Bizzell, Erica et al. (2018) Mycobacterium tuberculosis GroEL2 Modulates Dendritic Cell Responses. Infect Immun 86:
Tedesco, Dana; Grakoui, Arash (2018) Environmental peer pressure: CD4+ T cell help in tolerance and transplantation. Liver Transpl 24:89-97
Mavigner, Maud; Habib, Jakob; Deleage, Claire et al. (2018) Simian Immunodeficiency Virus Persistence in Cellular and Anatomic Reservoirs in Antiretroviral Therapy-Suppressed Infant Rhesus Macaques. J Virol 92:
Walker, Lary C (2018) Prion-like mechanisms in Alzheimer disease. Handb Clin Neurol 153:303-319
Kamberov, Yana G; Guhan, Samantha M; DeMarchis, Alessandra et al. (2018) Comparative evidence for the independent evolution of hair and sweat gland traits in primates. J Hum Evol 125:99-105
Wakeford, Alison G P; Morin, Elyse L; Bramlett, Sara N et al. (2018) A review of nonhuman primate models of early life stress and adolescent drug abuse. Neurobiol Stress 9:188-198
Singh, Arun; Jenkins, Meagan A; Burke Jr, Kenneth J et al. (2018) Glutamatergic Tuning of Hyperactive Striatal Projection Neurons Controls the Motor Response to Dopamine Replacement in Parkinsonian Primates. Cell Rep 22:941-952

Showing the most recent 10 out of 912 publications