This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.The basal ganglia are part of larger circuits. Cortical inputs reach striatum and subthalamic nucleus (STN), and are transmitted via external and internal pallidal segments (GPe, GPi, resp.) and substantia nigra pars reticulata to influence the activity of thalamocortical neurons. The function of this circuitry is abnormal in Parkinson's disease. One of the most salient abnormalities is the appearance of synchronized oscillatory activity which can be measured with local field potential (LFP) recordings. Studies in humans, using implanted deep brain stimulation (DBS) electrodes to record LFPs, have suggested that high-amplitude, low-frequency oscillations develop in parkinsonism. Uncertainties persist, however, regarding the temporal and causal relationship between circuit synchrony and parkinsonism, as well as the location at which dopamine loss exerts its synchronizing effects.We studied the development and long-term stability of LFP characteristics of parkinsonism in MPTP-treated primates, using chronically implanted LFP electrodes throughout striatum, GPe, GPi and STN, combined with pharmacologic manipulation of dopaminergic transmission (aim 1). We also studied the local effects of dopaminergic drugs on neuronal synchrony in these nuclei, using a microdialysis/LFP recording probe which allows us to assess the effects of drugs, applied locally via reverse microdialysis, on LFPs in the vicinity of the probe. These studies assessed drug-effects on spontaneous LFP production (aim 2), and on event-related LFP fluctuations in motor tasks (aim 3). These experiments helped to better understand the origin(s) and functional significance of neuronal ensemble activity in parkinsonism. This knowledge was useful in the development of antiparkinsonian treatments targeting synchronous basal ganglia activity, and developed criteria to detect the presence of parkinsonism in LFP signals from the basal ganglia. Conceivably, such criteria could be used in DBS devices to trigger 'on-demand' stimulation.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Primate Research Center Grants (P51)
Project #
5P51RR000165-47
Application #
7562662
Study Section
Special Emphasis Panel (ZRR1-CM-8 (01))
Project Start
2007-05-01
Project End
2008-04-30
Budget Start
2007-05-01
Budget End
2008-04-30
Support Year
47
Fiscal Year
2007
Total Cost
$39,499
Indirect Cost
Name
Emory University
Department
Otolaryngology
Type
Schools of Medicine
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Claw, Katrina G; George, Renee D; MacCoss, Michael J et al. (2018) Quantitative evolutionary proteomics of seminal fluid from primates with different mating systems. BMC Genomics 19:488
Adekambi, Toidi; Ibegbu, Chris C; Cagle, Stephanie et al. (2018) High Frequencies of Caspase-3 Expressing Mycobacterium tuberculosis-Specific CD4+ T Cells Are Associated With Active Tuberculosis. Front Immunol 9:1481
Beck, Goichi; Maehara, Shunsuke; Chang, Phat Ly et al. (2018) A Selective Phosphodiesterase 10A Inhibitor Reduces L-Dopa-Induced Dyskinesias in Parkinsonian Monkeys. Mov Disord 33:805-814
Georgieva, Maria; Sia, Jonathan Kevin; Bizzell, Erica et al. (2018) Mycobacterium tuberculosis GroEL2 Modulates Dendritic Cell Responses. Infect Immun 86:
Tedesco, Dana; Grakoui, Arash (2018) Environmental peer pressure: CD4+ T cell help in tolerance and transplantation. Liver Transpl 24:89-97
Mavigner, Maud; Habib, Jakob; Deleage, Claire et al. (2018) Simian Immunodeficiency Virus Persistence in Cellular and Anatomic Reservoirs in Antiretroviral Therapy-Suppressed Infant Rhesus Macaques. J Virol 92:
Walker, Lary C (2018) Prion-like mechanisms in Alzheimer disease. Handb Clin Neurol 153:303-319
Kamberov, Yana G; Guhan, Samantha M; DeMarchis, Alessandra et al. (2018) Comparative evidence for the independent evolution of hair and sweat gland traits in primates. J Hum Evol 125:99-105
Wakeford, Alison G P; Morin, Elyse L; Bramlett, Sara N et al. (2018) A review of nonhuman primate models of early life stress and adolescent drug abuse. Neurobiol Stress 9:188-198
Singh, Arun; Jenkins, Meagan A; Burke Jr, Kenneth J et al. (2018) Glutamatergic Tuning of Hyperactive Striatal Projection Neurons Controls the Motor Response to Dopamine Replacement in Parkinsonian Primates. Cell Rep 22:941-952

Showing the most recent 10 out of 912 publications