This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The goal of this project is to directly measure synaptic interactions on the dendritic trees of identified color opponent ganglion cells and to test the hypothesis that color opponency is determined by selective connections between cone-signal pathways and ganglion cell dendrites. To achieve this aim we were awarded an NIH shared instrumentation grant in 2001 to acquire a femtosecond, 2-photon scanning laser microscope for measuring light evoked calcium signals in the dendrites of retinal neurons. Over the last two years this facility was custom built, modeled after the system originally developed by Denk and Detwiler at the Max Planck in Heidelberg and has now been extensively tested on intact mouse and salamander retina and most recently on macaque retina. In collaboration with Peter Detwiler and his students we have successfully targeted both midget, parasol and other ganglion cells for whole cell recording in the intact macaque retina by imaging ganglion cell bodies and making whole-cell recordings after mechanical removal of the inner limiting membrane. Midget and parasol cells showed characteristic and long lasting light responses in this recording configuration. The cell bodies and dendritic trees were then intracellularly loaded with Calcium Green via the recording pipette and dendritic branches were targeted for imaging calcium signals in response to diffuse light pulses. As found previously for salamander and mouse ganglion cells, macaque ganglion cell dendrites show clear and rapid changes in calcium concentration in response to light steps. Finally, we have incorporated a new visual stimulus, using a digital light projector, which will permit the application of cone-specific visual stimuli during dendritic recording.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Primate Research Center Grants (P51)
Project #
5P51RR000166-45
Application #
7349350
Study Section
Special Emphasis Panel (ZRR1-CM-9 (01))
Project Start
2006-05-01
Project End
2007-04-30
Budget Start
2006-05-01
Budget End
2007-04-30
Support Year
45
Fiscal Year
2006
Total Cost
$132,006
Indirect Cost
Name
University of Washington
Department
Veterinary Sciences
Type
Other Domestic Higher Education
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Pham, Amelie; Carrasco, Marisa; Kiorpes, Lynne (2018) Endogenous attention improves perception in amblyopic macaques. J Vis 18:11
Zanos, Stavros; Rembado, Irene; Chen, Daofen et al. (2018) Phase-Locked Stimulation during Cortical Beta Oscillations Produces Bidirectional Synaptic Plasticity in Awake Monkeys. Curr Biol 28:2515-2526.e4
Choi, Hannah; Pasupathy, Anitha; Shea-Brown, Eric (2018) Predictive Coding in Area V4: Dynamic Shape Discrimination under Partial Occlusion. Neural Comput 30:1209-1257
Shushruth, S; Mazurek, Mark; Shadlen, Michael N (2018) Comparison of Decision-Related Signals in Sensory and Motor Preparatory Responses of Neurons in Area LIP. J Neurosci 38:6350-6365
Raghanti, Mary Ann; Edler, Melissa K; Stephenson, Alexa R et al. (2018) A neurochemical hypothesis for the origin of hominids. Proc Natl Acad Sci U S A 115:E1108-E1116
Wool, Lauren E; Crook, Joanna D; Troy, John B et al. (2018) Nonselective Wiring Accounts for Red-Green Opponency in Midget Ganglion Cells of the Primate Retina. J Neurosci 38:1520-1540
Hasegawa, Yu; Curtis, Britni; Yutuc, Vernon et al. (2018) Microbial structure and function in infant and juvenile rhesus macaques are primarily affected by age, not vaccination status. Sci Rep 8:15867
Oleskiw, Timothy D; Nowack, Amy; Pasupathy, Anitha (2018) Joint coding of shape and blur in area V4. Nat Commun 9:466
Eberle, R; Jones-Engel, L (2017) Understanding Primate Herpesviruses. J Emerg Dis Virol 3:
McAdams, Ryan M; McPherson, Ronald J; Kapur, Raj P et al. (2017) Focal Brain Injury Associated with a Model of Severe Hypoxic-Ischemic Encephalopathy in Nonhuman Primates. Dev Neurosci 39:107-123

Showing the most recent 10 out of 320 publications