This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Saccadic eye movements remain accurate throughout life despite the changes that occur in the brain during normal development, injury and aging. Here we examine whether this """"""""saccade adaptation"""""""" involves the cerebellum. The output element of the cerebellar cortex, the Purkinje cell, discharges two different action potentials: simple and complex spikes (CSs). It has been suggested that CSs report that a movement is in error and this increased activity modifies the frequency of simple spikes so that downstream they alter the signals that drive the eye muscles in a way that reduces the error. We deceive a normal monkey into thinking that its saccades are in error by jumping the target forward or backward as a saccade is launched toward it. The initial saccade undershoots or overshoots the target, respectively, and a second saccade occurs ~150 ms later to bring the eyes on target. During the time that an error exists between the initial and corrective saccade, CSs report the direction and magnitude of the error. If the deception is continued for hundreds of trials, saccades gradually increase or decrease their amplitudes, respectively, so saccades again are accurate. Does the change in CS activity actually drive this adaptation? To address this question, we stimulated in the superior colliculus, the source of the CS activity, to drive the putative adaptation signal artificially. When sub-threshold stimuli are delivered just after a saccade with the target extinguished, there are gradual changes in saccade amplitude, which are identical to those produced by the behavioral target jump paradigm. Moreover, changes in the timing and direction of the artificial error signal produce adaptations like those caused by similar manipulations in target jump paradigm. We suggest that CSs might drive not only saccade adaptation but other kinds of precisionmotor learning as well.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Primate Research Center Grants (P51)
Project #
5P51RR000166-48
Application #
7958838
Study Section
Special Emphasis Panel (ZRR1-CM-8 (02))
Project Start
2009-05-01
Project End
2010-04-30
Budget Start
2009-05-01
Budget End
2010-04-30
Support Year
48
Fiscal Year
2009
Total Cost
$315,186
Indirect Cost
Name
University of Washington
Department
Type
Other Domestic Higher Education
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Pham, Amelie; Carrasco, Marisa; Kiorpes, Lynne (2018) Endogenous attention improves perception in amblyopic macaques. J Vis 18:11
Zanos, Stavros; Rembado, Irene; Chen, Daofen et al. (2018) Phase-Locked Stimulation during Cortical Beta Oscillations Produces Bidirectional Synaptic Plasticity in Awake Monkeys. Curr Biol 28:2515-2526.e4
Choi, Hannah; Pasupathy, Anitha; Shea-Brown, Eric (2018) Predictive Coding in Area V4: Dynamic Shape Discrimination under Partial Occlusion. Neural Comput 30:1209-1257
Shushruth, S; Mazurek, Mark; Shadlen, Michael N (2018) Comparison of Decision-Related Signals in Sensory and Motor Preparatory Responses of Neurons in Area LIP. J Neurosci 38:6350-6365
Raghanti, Mary Ann; Edler, Melissa K; Stephenson, Alexa R et al. (2018) A neurochemical hypothesis for the origin of hominids. Proc Natl Acad Sci U S A 115:E1108-E1116
Wool, Lauren E; Crook, Joanna D; Troy, John B et al. (2018) Nonselective Wiring Accounts for Red-Green Opponency in Midget Ganglion Cells of the Primate Retina. J Neurosci 38:1520-1540
Hasegawa, Yu; Curtis, Britni; Yutuc, Vernon et al. (2018) Microbial structure and function in infant and juvenile rhesus macaques are primarily affected by age, not vaccination status. Sci Rep 8:15867
Oleskiw, Timothy D; Nowack, Amy; Pasupathy, Anitha (2018) Joint coding of shape and blur in area V4. Nat Commun 9:466
Eberle, R; Jones-Engel, L (2017) Understanding Primate Herpesviruses. J Emerg Dis Virol 3:
McAdams, Ryan M; McPherson, Ronald J; Kapur, Raj P et al. (2017) Focal Brain Injury Associated with a Model of Severe Hypoxic-Ischemic Encephalopathy in Nonhuman Primates. Dev Neurosci 39:107-123

Showing the most recent 10 out of 320 publications