This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.Objective: While area 5 has been considered a posterior parietal field involved exclusively in processing somatic inputs, recent evidence from our laboratory in both New World and Old World monkeys, as well as work from other laboratories, indicate that this cortical area is also involved in processing visual inputs, and is closely associated with the motor system. Accumulating evidence indicates that area 5 may be a 'central planner' critical for monitoring limb location during intended reaching and grasping, converting sensory locations into motor coordinates for intentional movement, and in perceiving the movements of the body in extra personal space. The goal of the present investigation is to determine the role of posterior parietal area 5 in visually guided and non-visually guided reaching and grasping, object manipulation, bilateral coordination of the hands, and information transfer across the' cerebral hemispheres. To accomplish this, we will make electrophysiologically targeted unilateral lesions in the hand and forearm representation of area 5 in macaque monkeys, and examine the effects of these lesions on these behaviors. We expect that ablations of area 5 will result in a variety of deficits involving manual dexterity, reaching, grasping, and bilateral coordination of the hands. The proposed studies are broken into three major groups of experiments. The first series of experiments will examine the cortical, callosal, and subcortical connections of area 5 and adjacent somatosensory area 2, in macaque monkeys. The second group of experiments will examine the consequences of precisely targeted lesions in area 5 on directed reaching and grasping, bilateral coordination of the hands, shape discrimination abilities and interhemispheric transfer. The tasks include reaching and grasping under visually guided and non-visually guided conditions, bilateral manipulation of objects, and object identification under both ipsilateral and bilateral hand use conditions. The final series of experiments will examine the cortical substrate for behavioral recovery by determining if changes in both functional organization and anatomical cortical connectivity have occurred in cortical area 2 as a consequence of the lesion. This study represents one of the first attempts to combine modern neuroanatomical, electrophysiological, and lesioning techniques to determine the contribution of a single cortical field involved in generating sophisticated hand use. Further, it is one of the few studies that utilizes electrophysiological and neuroanatomical techniques to examine the long-term cortical changes that occur after cortical damage, followed by behavioral training. These studies will ultimately allow us to better understand the role of area 5 in reaching, grasping, object manipulation, and bilateral coordination of the hands, the time course of behavioral plasticity following lesions in area 5, and the cortical mechanisms that contribute to recovery after brain injury.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Primate Research Center Grants (P51)
Project #
5P51RR000169-47
Application #
7715593
Study Section
Special Emphasis Panel (ZRR1-CM-8 (01))
Project Start
2008-05-01
Project End
2009-04-30
Budget Start
2008-05-01
Budget End
2009-04-30
Support Year
47
Fiscal Year
2008
Total Cost
$54,222
Indirect Cost
Name
University of California Davis
Department
Veterinary Sciences
Type
Schools of Veterinary Medicine
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Comrie, Alison E; Gray, Daniel T; Smith, Anne C et al. (2018) Different macaque models of cognitive aging exhibit task-dependent behavioral disparities. Behav Brain Res 344:110-119
Day, George Q; Ng, Jillian; Oldt, Robert F et al. (2018) DNA-based Determination of Ancestry in Cynomolgus Macaques (Macaca fascicularis). J Am Assoc Lab Anim Sci 57:432-442
Carroll, Timothy D; Jegaskanda, Sinthujan; Matzinger, Shannon R et al. (2018) A Lipid/DNA Adjuvant-Inactivated Influenza Virus Vaccine Protects Rhesus Macaques From Uncontrolled Virus Replication After Heterosubtypic Influenza A Virus Challenge. J Infect Dis 218:856-867
Midic, Uros; VandeVoort, Catherine A; Latham, Keith E (2018) Determination of single embryo sex in Macaca mulatta and Mus musculus RNA-Seq transcriptome profiles. Physiol Genomics 50:628-635
Almodovar, Sharilyn; Swanson, Jessica; Giavedoni, Luis D et al. (2018) Lung Vascular Remodeling, Cardiac Hypertrophy, and Inflammatory Cytokines in SHIVnef-Infected Macaques. Viral Immunol 31:206-222
Ciupe, Stanca M; Miller, Christopher J; Forde, Jonathan E (2018) A Bistable Switch in Virus Dynamics Can Explain the Differences in Disease Outcome Following SIV Infections in Rhesus Macaques. Front Microbiol 9:1216
Feng, Jun-Feng; Liu, Jing; Zhang, Lei et al. (2017) Electrical Guidance of Human Stem Cells in the Rat Brain. Stem Cell Reports 9:177-189
Han, Pengcheng; Nielsen, Megan; Song, Melissa et al. (2017) The Impact of Aging on Brain Pituitary Adenylate Cyclase Activating Polypeptide, Pathology and Cognition in Mice and Rhesus Macaques. Front Aging Neurosci 9:180
Pittet, Florent; Johnson, Crystal; Hinde, Katie (2017) Age at reproductive debut: Developmental predictors and consequences for lactation, infant mass, and subsequent reproduction in rhesus macaques (Macaca mulatta). Am J Phys Anthropol 164:457-476
Kyle, Colin T; Stokes, Jared; Bennett, Jeffrey et al. (2017) Cytoarchitectonically-driven MRI atlas of nonhuman primate hippocampus: Preservation of subfield volumes in aging. Hippocampus :

Showing the most recent 10 out of 408 publications