The administrative core of the UNC Alcohol Research Center entitled ?MOLECULAR AND CIRCUIT PATHOGENESIS IN ALCOHOL ADDICTION? is organized to foster and conduct interdisciplinary and collaborative research on alcohol use disorders with a specific emphasis on molecular and circuit pathogenesis underlying these disorders. In this renewal, we build upon the strengths of our Center by extending our understanding of ethanol pathology mediated by dysregulation of neural circuits involving cytokine, dopamine, dynorphin, GABA, glutamate, histone deacetylase and kinase signaling.
The specific aims of the Administrative Core are to provide scientific inspiration and administrative leadership for the Alcohol Research Center, monitor and enhance interaction among the research components, optimize synergy and sharing of resources and services, organize seminars and workshops to stimulate exchange of scientific information among the Center faculty and staff. Further, we will work to stimulate new alcohol research programs at UNC, disseminate new research knowledge to health professionals, academics, college students, families and youth in NC. The Administrative core is involved in community outreach activities designed to improve awareness, prevention, and treatment of alcohol use disorders. In addition, the Administrative Core oversees all budgetary issues, appropriate allocation of funds as well as preparation of progress reports and the renewal of the ARC. In summary, the administrative core is designed to maximize research rigor, significance, innovation, collaboration and productivity to advance the research aims and to use scientific knowledge to improve health by educating health professionals, parents, college students and youth.

Agency
National Institute of Health (NIH)
Institute
National Institute on Alcohol Abuse and Alcoholism (NIAAA)
Type
Comprehensive Center (P60)
Project #
5P60AA011605-24
Application #
10078810
Study Section
Special Emphasis Panel (ZAA1)
Project Start
Project End
Budget Start
2020-12-01
Budget End
2021-11-30
Support Year
24
Fiscal Year
2021
Total Cost
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Harper, Kathryn M; Knapp, Darin J; Criswell, Hugh E et al. (2018) Vasopressin and alcohol: a multifaceted relationship. Psychopharmacology (Berl) 235:3363-3379
Boschen, Karen E; Gong, Henry; Murdaugh, Laura B et al. (2018) Knockdown of Mns1 Increases Susceptibility to Craniofacial Defects Following Gastrulation-Stage Alcohol Exposure in Mice. Alcohol Clin Exp Res 42:2136-2143
Jaramillo, Anel A; Randall, Patrick A; Stewart, Spencer et al. (2018) Functional role for cortical-striatal circuitry in modulating alcohol self-administration. Neuropharmacology 130:42-53
Vetreno, Ryan P; Lawrimore, Colleen J; Rowsey, Pamela J et al. (2018) Persistent Adult Neuroimmune Activation and Loss of Hippocampal Neurogenesis Following Adolescent Ethanol Exposure: Blockade by Exercise and the Anti-inflammatory Drug Indomethacin. Front Neurosci 12:200
Broadwater, Margaret A; Lee, Sung-Ho; Yu, Yang et al. (2018) Adolescent alcohol exposure decreases frontostriatal resting-state functional connectivity in adulthood. Addict Biol 23:810-823
Fiorenza, Amanda M; Shnitko, Tatiana A; Sullivan, Kaitlin M et al. (2018) Ethanol Exposure History and Alcoholic Reward Differentially Alter Dopamine Release in the Nucleus Accumbens to a Reward-Predictive Cue. Alcohol Clin Exp Res 42:1051-1061
Hwa, Lara S; Neira, Sofia; Pina, Melanie M et al. (2018) Predator odor increases avoidance and glutamatergic synaptic transmission in the prelimbic cortex via corticotropin-releasing factor receptor 1 signaling. Neuropsychopharmacology :
Faccidomo, Sara; Swaim, Katarina S; Saunders, Briana L et al. (2018) Mining the nucleus accumbens proteome for novel targets of alcohol self-administration in male C57BL/6J mice. Psychopharmacology (Berl) 235:1681-1696
Bohnsack, John Peyton; Hughes, Benjamin A; O'Buckley, Todd K et al. (2018) Histone deacetylases mediate GABAA receptor expression, physiology, and behavioral maladaptations in rat models of alcohol dependence. Neuropsychopharmacology 43:1518-1529
Coleman Jr, Leon G; Zou, Jian; Qin, Liya et al. (2018) HMGB1/IL-1? complexes regulate neuroimmune responses in alcoholism. Brain Behav Immun 72:61-77

Showing the most recent 10 out of 227 publications