The Hormone Assay Core assists investigators in the measurement of hormones in biologic fluids as related to diabetes, endocrine and metabolic research. The core provides space, equipment, and personnel for sample analysis and method development. User charge backs support the cost of reagents, supplies and pro-rated service contracts. The analysis available include 1) insulin, 2) free insulin, 3) glucagon, 4) cortisol, 5) catecholamines, 6) growth hormone, 7) c-peptides (human, canine, porcine), 8) pancreatic polypeptides, 9) leptin, 10) ratcorticosterone, and 11) GLP-1 (active). Several of these assays are available in """"""""micro"""""""" methods for the analysis of hormone levels in very small volumes of plasma or blood. Furthermore, some assays are designed to measure hormones in a particular species. The core has the potential to develop new tests and technologies to expand the scope of its current testing. An annual survey is conducted to determine the needs of users for new assays. Over the past grant period, there has been an increased demand for at least half of the services offered and a constant demand for the remainder. The core will be expanded to meet an expected growth in demand that is anticipated as a result of funding of a Murine Metabolic and Physiology Center. An advisory Committees will deal with issues of coordination between the DRTC and MMPC, as well as user fees and new service implementation.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Comprehensive Center (P60)
Project #
5P60DK020593-30
Application #
7627223
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
2008-04-01
Budget End
2009-03-31
Support Year
30
Fiscal Year
2008
Total Cost
$367,891
Indirect Cost
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Dutter, Brendan F; Ender, Anna; Sulikowski, Gary A et al. (2018) Rhodol-based thallium sensors for cellular imaging of potassium channel activity. Org Biomol Chem 16:5575-5579
Herrick, Mary K; Favela, Kristin M; Simerly, Richard B et al. (2018) Attenuation of diet-induced hypothalamic inflammation following bariatric surgery in female mice. Mol Med 24:56
Perez, Katia M; Curley, Kathleen L; Slaughter, James C et al. (2018) Glucose Homeostasis and Energy Balance in Children With Pseudohypoparathyroidism. J Clin Endocrinol Metab 103:4265-4274
Marre, Meghan L; McGinty, John W; Chow, I-Ting et al. (2018) Modifying Enzymes Are Elicited by ER Stress, Generating Epitopes That Are Selectively Recognized by CD4+ T Cells in Patients With Type 1 Diabetes. Diabetes 67:1356-1368
Creecy, Amy; Uppuganti, Sasidhar; Unal, Mustafa et al. (2018) Low bone toughness in the TallyHO model of juvenile type 2 diabetes does not worsen with age. Bone 110:204-214
Russart, Kathryn L G; Huk, Danielle; Nelson, Randy J et al. (2018) Elevated aggressive behavior in male mice with thyroid-specific Prkar1a and global Epac1 gene deletion. Horm Behav 98:121-129
Coppola, Jennifer J; Disney, Anita A (2018) Most calbindin-immunoreactive neurons, but few calretinin-immunoreactive neurons, express the m1 acetylcholine receptor in the middle temporal visual area of the macaque monkey. Brain Behav 8:e01071
Zhu, Lin; Luu, Thao; Emfinger, Christopher H et al. (2018) CETP Inhibition Improves HDL Function but Leads to Fatty Liver and Insulin Resistance in CETP-Expressing Transgenic Mice on a High-Fat Diet. Diabetes 67:2494-2506
Lu, Sichang; McGough, Madison A P; Shiels, Stefanie M et al. (2018) Settable polymer/ceramic composite bone grafts stabilize weight-bearing tibial plateau slot defects and integrate with host bone in an ovine model. Biomaterials 179:29-45
Horwitz, Elad; Krogvold, Lars; Zhitomirsky, Sophia et al. (2018) ?-Cell DNA Damage Response Promotes Islet Inflammation in Type 1 Diabetes. Diabetes 67:2305-2318

Showing the most recent 10 out of 1487 publications