The proposed research will increase our understanding of the neural mechanisms via which alcohol escalates aggressive behavior in some individuals but not in others. Violent outbursts are one of the most costly, horrifying and damaging consequences of alcohol consumption, representing one of the most significant problems for the public health and criminal justice systems. The overarching hypothesis is to assess how escalated aggression, particularly under the influence of alcohol, is a function of dysregulation of serotonergic activity in the raphe cells by feedback via somatodendritic autoreceptors and by GABAergic and glutamatergic influences, especially by feedback from the prefrontal cortex, and by CRF input. We propose that the dysregulation of feedback control on serotonergic neurons projecting to prelimbic, infralimbic and orbitoventral regions of the prefrontal cortex characterizes those individuals who engage in escalated aggressive behavior after alcohol consumption. Specifically, experiments in mice and rats are designed to answer the following questions: (1) How is the activity of serotonergic projections from the dorsal raphe n (DRN) to the prefrontal cortex (PFC) regulated in individuals who engage in escalated aggressive behavior? To which extent is the expression of 5-HT receptor subtypes in the prefrontal cortex critical for escalated aggressive behavior? Is gene expression for the 5-HT1 and 5-HT2 receptor families in the prefrontal cortex suppressed in animals that engage in alcohol-heightened aggression? What is the respective role of presynaptic receptors in the PFC terminals relative to somatodendritic autoreceptors and SERT in gating serotonin transmission in highly aggressive individuals, particularly after alcohol consumption? (2) Are glutamatergic and GABAergic influences on the 5-HT cells in the DRN critical for the display of escalated aggressive behavior, particularly after alcohol self-administration? Do these signals originate from GABAergic interneurons? How significant is the glutamatergic feedback from the PFC? Which subunits in GABA-A receptors are essential for the aggression- heightening effects of alcohol? Are NMDA glutamate receptor subtypes more selective in their modulation of escalated aggression after alcohol self-administration than AMPA receptors? (3) How critical is the modulation by CRF of serotonergic projections to the PFC in individuals who engage in escalated aggressive behavior? Can the respective role of CRF 1 and 2 receptor subtypes be defined for the intensification or attenuation of alcohol-heightened aggressive behavior? Are the CRF receptors on serotonergic cells the critical population that is pivotal for escalated aggressive behavior after alcohol self-administration? The experimental work relies on quantitative ethological methodology for the analysis of species-normative and escalated forms of aggression, voluntary alcohol self-administration, real time PCR, in situ hybridization histochemistry, genetic point mutations, in vivo microdialysis and HPLC, and intracerebral microinfusions. The anticipated outcome will identify targets for therapeutic interventions.
The rationale for the proposed research is readily translated to one of the most significant problems for the public health and criminal justice system, namely to understand why alcohol escalates aggressive behavior in some individuals but not in others. Violent outbursts are one of the most costly, horrifying and destructive consequences of alcohol consumption. The proposed research will assess how escalated aggression, particularly under the influence of alcohol, is a function of dysregulation of serotonergic activity in the raphe cells by feedback via GABAergic, glutamatergic and CRF modulation.
Showing the most recent 10 out of 57 publications