This application focuses on three key steps in Salmonella infection; how the bacteria adhere to cells, kill or disarm phagocytic cells, and then replicate in only specific tissues of the body. The mechanism by which Salmonella colonizes the small intestine is not known. The investigator has identified a new class of pili that adhere to M cells. A mutant strain missing this pilus is partially attenuated for virulence (five fold) suggesting alternative adherence factors (Baumler et al., 1995). The investigators will use several approaches to identify these other adherence factors and study the surface components of the cell to which they bind. Once the bacteria are within the lymphatic system or the spleen and liver they pursue a lifestyle that is partly extracellular. Salmonella bacteria kill and lyse the macrophage after about 24 hours of infection in vitro. The goal of Salmonella may be to reach and disarm the macrophage and use the host cells nutrients for its own growth. The investigators have selected transposon mutants that grow in macrophages at the same rate as the parent strain but without killing. The first two independent mutants that were analyzed are located about 300 bp apart in ompR, a member of the two component regulator family. These mutants are totally avirulent. Several other mutants were identified in the same selection but have not yet been characterized. They will clone and sequence the cognate genes and determine their role in pathogenesis in the mouse. Finally, Salmonella lives within a limited number of cell types within the host. In part, this tissue tropism is defined by nutrition, e.g., none of the known mechanisms to take up Fe(III) or Fe(II) appears to play any role in virulence. We have identified a new Salmonella iron uptake mechanism that is essential for virulence.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI022933-14
Application #
2886497
Study Section
Bacteriology and Mycology Subcommittee 2 (BM)
Project Start
1987-04-01
Project End
2002-03-31
Budget Start
1999-04-01
Budget End
2000-03-31
Support Year
14
Fiscal Year
1999
Total Cost
Indirect Cost
Name
Oregon Health and Science University
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
009584210
City
Portland
State
OR
Country
United States
Zip Code
97239
Li, Jie; Overall, Christopher C; Nakayasu, Ernesto S et al. (2015) Analysis of the Salmonella regulatory network suggests involvement of SsrB and H-NS in ?(E)-regulated SPI-2 gene expression. Front Microbiol 6:27
Deatherage Kaiser, Brooke L; Li, Jie; Sanford, James A et al. (2013) A Multi-Omic View of Host-Pathogen-Commensal Interplay in Salmonella-Mediated Intestinal Infection. PLoS One 8:e67155
Kidwai, Afshan S; Mushamiri, Ivy; Niemann, George S et al. (2013) Diverse secreted effectors are required for Salmonella persistence in a mouse infection model. PLoS One 8:e70753
Hovis, Kelley M; Mojica, Sergio; McDermott, Jason E et al. (2013) Genus-optimized strategy for the identification of chlamydial type III secretion substrates. Pathog Dis 69:213-22
Nakayasu, Ernesto S; Brown, Roslyn N; Ansong, Charles et al. (2013) Multi-omic data integration links deleted in breast cancer 1 (DBC1) degradation to chromatin remodeling in inflammatory response. Mol Cell Proteomics 12:2136-47
Ansong, Charles; Deatherage, Brooke L; Hyduke, Daniel et al. (2013) Studying Salmonellae and Yersiniae host-pathogen interactions using integrated 'omics and modeling. Curr Top Microbiol Immunol 363:21-41
Niemann, George S; Brown, Roslyn N; Mushamiri, Ivy T et al. (2013) RNA type III secretion signals that require Hfq. J Bacteriol 195:2119-25
Brown, Roslyn N; Sanford, James A; Park, Jea H et al. (2012) A Comprehensive Subcellular Proteomic Survey of Salmonella Grown under Phagosome-Mimicking versus Standard Laboratory Conditions. Int J Proteomics 2012:123076
Archuleta, Michelle N; McDermott, Jason E; Edwards, Jeremy S et al. (2012) An adaptive coarse graining method for signal transduction in three dimensions. Fundam Inform 118:
Yoon, Hyunjin; Ansong, Charles; McDermott, Jason E et al. (2011) Systems analysis of multiple regulator perturbations allows discovery of virulence factors in Salmonella. BMC Syst Biol 5:100

Showing the most recent 10 out of 57 publications