A global increase in invasive group A Streptococcus (GAS) disease (bacteremia, necrotizing fasciitis, and streptococcal toxic shock syndrome) that began in the 1980's has continued through the present decade and has focused attention on investigation of mechanisms of GAS pathogenesis. During the previous funding period, work in their laboratory and others further documented the central role of the hyaluronic acid capsular polysaccharide in GAS virulence in experimental models of local and systemic infection. These studies showed that the capsule interferes with the phagocytic killing, prevents internalization of GAS by epithelial cells, modulates adherence mediated by other GAS surface molecules, and acts as a ligand for attachment of GAS to CD44 on pharyngeal keratinocytes. Despite these other advances, it remains undefined how the capsule or other virulence determinants control the processes of tissue invasion and persistent colonization in the host. During the next funding period, their objectives are to define the role of the hyaluronic acid capsule in invasion of GAS from an epithelial surface to deep tissue, to characterize the effects of capsule on intracellular trafficking of GAS in epithelial keratinocytes, and to determine how regulation of capsule expression in vivo contributes to pathogenesis of GAS infection. The proposed experiments will make use of primary keratinocyte cultures and a model system simulating intact human skin in conjunction with confocal fluorescence microscopy in order to study the tissue and cell biology of GAS translocation through human skin, the phenomenon of persistence within cells, and the regulation of capsule expression at various phases of the infection process. Results of these studies will elucidate the basic pathogenic mechanisms involved in GAS disease and may suggest strategies for intervention.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI029952-10
Application #
6373200
Study Section
Bacteriology and Mycology Subcommittee 2 (BM)
Program Officer
Rubin, Fran A
Project Start
1991-07-01
Project End
2005-06-30
Budget Start
2001-07-01
Budget End
2002-06-30
Support Year
10
Fiscal Year
2001
Total Cost
$296,625
Indirect Cost
Name
Brigham and Women's Hospital
Department
Type
DUNS #
071723621
City
Boston
State
MA
Country
United States
Zip Code
02115
Pinho-Ribeiro, Felipe A; Baddal, Buket; Haarsma, Rianne et al. (2018) Blocking Neuronal Signaling to Immune Cells Treats Streptococcal Invasive Infection. Cell 173:1083-1097.e22
Velarde, Jorge J; O'Seaghdha, Maghnus; Baddal, Buket et al. (2017) Binding of NAD+-Glycohydrolase to Streptolysin O Stabilizes Both Toxins and Promotes Virulence of Group A Streptococcus. MBio 8:
Hancz, Dóra; Westerlund, Elsa; Bastiat-Sempe, Benedicte et al. (2017) Inhibition of Inflammasome-Dependent Interleukin 1? Production by Streptococcal NAD+-Glycohydrolase: Evidence for Extracellular Activity. MBio 8:
Sharma, Onkar; O'Seaghdha, Maghnus; Velarde, Jorge J et al. (2016) NAD+-Glycohydrolase Promotes Intracellular Survival of Group A Streptococcus. PLoS Pathog 12:e1005468
Velarde, Jorge J; Ashbaugh, Melissa; Wessels, Michael R (2014) The human antimicrobial peptide LL-37 binds directly to CsrS, a sensor histidine kinase of group A Streptococcus, to activate expression of virulence factors. J Biol Chem 289:36315-24
Jiang, Shengmei; Wessels, Michael R (2014) BsaB, a novel adherence factor of group B Streptococcus. Infect Immun 82:1007-16
O'Seaghdha, Maghnus; Wessels, Michael R (2013) Streptolysin O and its co-toxin NAD-glycohydrolase protect group A Streptococcus from Xenophagic killing. PLoS Pathog 9:e1003394
Love, John F; Tran-Winkler, Hien J; Wessels, Michael R (2012) Vitamin D and the human antimicrobial peptide LL-37 enhance group a streptococcus resistance to killing by human cells. MBio 3:
Logsdon, Lauren K; Hakansson, Anders P; Cortes, Guadalupe et al. (2011) Streptolysin O inhibits clathrin-dependent internalization of group A Streptococcus. MBio 2:e00332-10
Tran-Winkler, Hien J; Love, John F; Gryllos, Ioannis et al. (2011) Signal transduction through CsrRS confers an invasive phenotype in group A Streptococcus. PLoS Pathog 7:e1002361

Showing the most recent 10 out of 38 publications