. The applicant's laboratory is involved in a continuing study of medicinal plants as a source of new chemotherapeutic agents. As part of this research, the long-term objective of this proposal is the discovery of plant-derived natural products and their analogs as anti-HIV agents with novel structures and mechanisms of action. Specifically, Dr. Lee proposes to isolate and characterize the potent anti-HIV principles from extracts of 64 selected plant species which have not been investigated previously for their anti-HIV constituents. Selection of extracts for investigations will be based on a preliminary in-house demonstration of potent inhibition of HIV replication in H9 lymphocytes and/or of HIV reverse transcriptase. Bioactivity-directed fractionation and isolation of the active principles will be guided by an in vitro P24 antigen capture assay in H9 lymphocytes. The structures of the anti-HIV principles so isolated will be determined using modern physical methods, including spectral and X-ray analyses. New active leads discovered from this study will be selected for structural modifications and synthesis of analogs to determine structure-activity relationships and their mechanism of action in cell culture-based assays, as well as to improve the pharmacological profiles of the parent compounds.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI033066-07
Application #
2672150
Study Section
AIDS and Related Research Study Section 4 (ARRD)
Project Start
1992-08-01
Project End
2000-04-30
Budget Start
1998-05-01
Budget End
1999-04-30
Support Year
7
Fiscal Year
1998
Total Cost
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
078861598
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Liu, Qingbo; Li, Wei; Huang, Li et al. (2018) Identification, structural modification, and dichotomous effects on human immunodeficiency virus type 1 (HIV-1) replication of ingenane esters from Euphorbia kansui. Eur J Med Chem 156:618-627
Tian, Ye; Liu, Zhaoqiang; Liu, Jinghan et al. (2018) Targeting the entrance channel of NNIBP: Discovery of diarylnicotinamide 1,4-disubstituted 1,2,3-triazoles as novel HIV-1 NNRTIs with high potency against wild-type and E138K mutant virus. Eur J Med Chem 151:339-350
Huang, Li; Lai, Wei-Hong; Zhu, Lei et al. (2018) Elimination of HIV-1 Latently Infected Cells by Gnidimacrin and a Selective HDAC Inhibitor. ACS Med Chem Lett 9:268-273
Wei, Lei; Wang, Hui-Ling; Huang, Li et al. (2017) Drug-like property-driven optimization of 4-substituted 1,5-diarylanilines as potent HIV-1 non-nucleoside reverse transcriptase inhibitors against rilpivirine-resistant mutant virus. Bioorg Med Chem Lett 27:2788-2792
Zhao, Yu; Gu, Qiong; Morris-Natschke, Susan L et al. (2016) Incorporation of Privileged Structures into Bevirimat Can Improve Activity against Wild-Type and Bevirimat-Resistant HIV-1. J Med Chem 59:9262-9268
Jiang, Cheng; Luo, Pan; Zhao, Yu et al. (2016) Carolignans from the Aerial Parts of Euphorbia sikkimensis and Their Anti-HIV Activity. J Nat Prod 79:578-83
Li, Jizhen; Goto, Masuo; Yang, Xiaoming et al. (2016) Fluorinated betulinic acid derivatives and evaluation of their anti-HIV activity. Bioorg Med Chem Lett 26:68-71
Dang, Zhao; Zhu, Lei; Lai, Weihong et al. (2016) Aloperine and Its Derivatives as a New Class of HIV-1 Entry Inhibitors. ACS Med Chem Lett 7:240-4
Liu, Na; Wei, Lei; Huang, Li et al. (2016) Novel HIV-1 Non-nucleoside Reverse Transcriptase Inhibitor Agents: Optimization of Diarylanilines with High Potency against Wild-Type and Rilpivirine-Resistant E138K Mutant Virus. J Med Chem 59:3689-704
Yan, Min; Lu, Yan; Chen, Chin-Ho et al. (2015) Stelleralides D-J and Anti-HIV Daphnane Diterpenes from Stellera chamaejasme. J Nat Prod 78:2712-8

Showing the most recent 10 out of 119 publications