: Experimental Leishmania major infections in mice have been used extensively to understand how cell-mediated immunity (CMI) develops, and to specifically define the factors that dictate whether a Thl or Th2 response is observed after activation of T cells. Such studies have clearly shown an important role for IL-12 in the development of resistance and a Thl response. However, despite a great increase in our knowledge of the events that are associated with the development of Thl responses, little is understood about the rules that govern the maintenance of CMI. Our laboratory has recently shown that IL-12 is required not only to initiate Thl cell development, but also to maintain this response. This proposal seeks to determine how IL-12 participates in maintaining CMI, and in so doing will more broadly investigate how immunologic memory works in L. major healed mice.
Our specific aims address the three critical components for CMI: memory T cell function (Aim 1), the antigen-in this case the role of parasite persistence (Aim 2), and the accessory cells-specifically dendritic cells-that both present antigen and influence the nature of the T cells that develop (Aim 3). The working hypothesis of this proposal is that CMI requires the constant renewal of the Thl population from a non-polarized pool of T cells. To test this hypothesis a series of adoptive transfer experiments are proposed, both with conventional T cells, as well as TCR transgenic T cells recognizing a leishmanial antigen. The donor cells will be followed in the recipient mice to assess their trafficking patterns, cytokine production and life span. An analysis of the role of parasite persistence will use a L. major (dhfr-ts-) thymidine auxotroph that infects mice, but fails to survive. Finally, the role of antigen presentation will be assessed by characterizing the dendritic cell response associated with resistance. Preliminary studies from this laboratory demonstrated that CD40-CD40L interactions are not required for maintenance of immunity, and in this aim, the compensatory role of TRANCE will be tested. Overall, these experiments should provide a clear picture of the dynamic interactions between T cells, dendritic cells and persisting parasites that are required to maintain cell-mediated immunity. ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI035914-11
Application #
6877148
Study Section
Tropical Medicine and Parasitology Study Section (TMP)
Program Officer
Wali, Tonu M
Project Start
1994-09-01
Project End
2008-03-31
Budget Start
2005-04-01
Budget End
2006-03-31
Support Year
11
Fiscal Year
2005
Total Cost
$396,250
Indirect Cost
Name
University of Pennsylvania
Department
Pathology
Type
Schools of Veterinary Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Crosby, Erika J; Goldschmidt, Michael H; Wherry, E John et al. (2014) Engagement of NKG2D on bystander memory CD8 T cells promotes increased immunopathology following Leishmania major infection. PLoS Pathog 10:e1003970
Carvalho, Lucas P; Petritus, Patricia M; Trochtenberg, Alyssa L et al. (2012) Lymph node hypertrophy following Leishmania major infection is dependent on TLR9. J Immunol 188:1394-401
Colpitts, Sara; Scott, Phillip (2010) Memory T-cell subsets in parasitic infections. Adv Exp Med Biol 684:145-54
Colpitts, Sara L; Scott, Phillip (2010) The early generation of a heterogeneous CD4+ T cell response to Leishmania major. J Immunol 185:2416-23
Colpitts, Sara L; Dalton, Nicole M; Scott, Phillip (2009) IL-7 receptor expression provides the potential for long-term survival of both CD62Lhigh central memory T cells and Th1 effector cells during Leishmania major infection. J Immunol 182:5702-11
Pakpour, Nazzy; Zaph, Colby; Scott, Phillip (2008) The central memory CD4+ T cell population generated during Leishmania major infection requires IL-12 to produce IFN-gamma. J Immunol 180:8299-305
Gray, Peter M; Reiner, Steven L; Smith, Deborah F et al. (2006) Antigen-experienced T cells limit the priming of naive T cells during infection with Leishmania major. J Immunol 177:925-33
Buxbaum, Laurence U; Scott, Phillip (2005) Interleukin 10- and Fcgamma receptor-deficient mice resolve Leishmania mexicana lesions. Infect Immun 73:2101-8
Buxbaum, Laurence U; Denise, Hubert; Coombs, Graham H et al. (2003) Cysteine protease B of Leishmania mexicana inhibits host Th1 responses and protective immunity. J Immunol 171:3711-7
Buxbaum, Laurence U; Uzonna, Jude E; Goldschmidt, Michael H et al. (2002) Control of New World cutaneous leishmaniasis is IL-12 independent but STAT4 dependent. Eur J Immunol 32:3206-15

Showing the most recent 10 out of 11 publications