Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
1R01AI039071-01A1
Application #
2076179
Study Section
Tropical Medicine and Parasitology Study Section (TMP)
Project Start
1996-07-01
Project End
2000-06-30
Budget Start
1996-07-01
Budget End
1997-06-30
Support Year
1
Fiscal Year
1996
Total Cost
Indirect Cost
Name
Stanford University
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
800771545
City
Stanford
State
CA
Country
United States
Zip Code
94305
Safeukui, Innocent; Gomez, NoƩ D; Adelani, Aanuoluwa A et al. (2015) Malaria induces anemia through CD8+ T cell-dependent parasite clearance and erythrocyte removal in the spleen. MBio 6:
Mbengue, Alassane; Bhattacharjee, Souvik; Pandharkar, Trupti et al. (2015) A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria. Nature 520:683-7
Abdul-Wahid, Badi'; Feng, Haoyun; Rajan, Dinesh et al. (2014) AWE-WQ: fast-forwarding molecular dynamics using the accelerated weighted ensemble. J Chem Inf Model 54:3033-43
Fru-Cho, Jerome; Bumah, Violet V; Safeukui, Innocent et al. (2014) Molecular typing reveals substantial Plasmodium vivax infection in asymptomatic adults in a rural area of Cameroon. Malar J 13:170
Fernandez-Pol, Sebastian; Slouka, Zdenek; Bhattacharjee, Souvik et al. (2013) A bacterial phosphatase-like enzyme of the malaria parasite Plasmodium falciparum possesses tyrosine phosphatase activity and is implicated in the regulation of band 3 dynamics during parasite invasion. Eukaryot Cell 12:1179-91
Jiang, Rays H Y; Stahelin, Robert V; Bhattacharjee, Souvik et al. (2013) Eukaryotic virulence determinants utilize phosphoinositides at the ER and host cell surface. Trends Microbiol 21:145-56
Abdul-Wahid, Badi'; Yu, Li; Rajan, Dinesh et al. (2012) Folding Proteins at 500 ns/hour with Work Queue. Proc IEEE Int Conf Escience 2012:1-8
Bhattacharjee, Souvik; Stahelin, Robert V; Speicher, Kaye D et al. (2012) Endoplasmic reticulum PI(3)P lipid binding targets malaria proteins to the host cell. Cell 148:201-12
Bhattacharjee, Souvik; Speicher, Kaye D; Stahelin, Robert V et al. (2012) PI(3)P-independent and -dependent pathways function together in a vacuolar translocation sequence to target malarial proteins to the host erythrocyte. Mol Biochem Parasitol 185:106-13
Marvin, Rebecca G; Wolford, Janet L; Kidd, Matthew J et al. (2012) Fluxes in ""free"" and total zinc are essential for progression of intraerythrocytic stages of Plasmodium falciparum. Chem Biol 19:731-41

Showing the most recent 10 out of 44 publications