Among potential targets for antiviral therapy that arise during certain viral infections are the virus-coded proteinases. These enzymes, essential for the synthesis of infectious virus, are required to process virus-specific precursor proteins involved in the maturation, assembly and replication of such pathogenic human viruses as adenovirus, poliovirus, encephalitis virus, hepatitis A and C viruses, cytomegalovirus, and human immunodeficiency virus. virus-coded proteinases are highly specific for their virus-coded substrates. If equally specific inhibitors can be developed and targeted to infected cells, they should interfere with virus replication and not with normal cellular metabolism. Our model system is the infection of HeLa cells in culture by human adenovirus serotype 2 (Ad2). We showed for maximal Ad2 proteinase activity in vitro, three components are required- the protein product of the adenovirus L3 23K gene, an 11 amino acid peptide (pVlc) that originates from the C-terminus of virion precursor protein pvI, and the viral DNA. The cofactors increase k(cat), 300-fold with pVlc and 6000-fold with Ad2 DNA as well. We solved the three-dimensional structure of the proteinase complexed with pVlc at 2.6 Angstrom resolution. The fold of the protein is unique. A putative active site contains a Cys-His-Glu triplet and oxyanion hole in an arrangement similar to that in papain. If that is the active site, this protein would represent a new class of cysteine proteinases and a new, fifth group of enzymes that contain catalytic triads. Here we propose to understand at the biochemical and structural levels how the activity of the adenovirus proteinase is regulated. We shall locate and characterize the active site, elucidate the mechanisms by which the two cofactors stimulate proteinase activity and characterize the enzyme during different times after infection. We have just shown that beta-actin can serve as a cofactor and will characterize that interaction with the enzyme in vitro and in vivo. Although important in themselves, the results of these experiments will also be used in a subsequent grant to design different types of proteinase inhibitors to act as antiviral agents.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI041599-04
Application #
2887509
Study Section
Experimental Virology Study Section (EVR)
Program Officer
Beisel, Christopher E
Project Start
1997-07-01
Project End
2001-06-30
Budget Start
1999-07-01
Budget End
2000-06-30
Support Year
4
Fiscal Year
1999
Total Cost
Indirect Cost
Name
Brookhaven National Laboratory
Department
Type
DUNS #
027579460
City
Upton
State
NY
Country
United States
Zip Code
11973
Turkin, Alexander; Zhang, Lei; Marcozzi, Alessio et al. (2016) Speeding up biomolecular interactions by molecular sledding. Chem Sci 7:916-920
Mangel, Walter F; McGrath, William J; Xiong, Kan et al. (2016) Molecular sled is an eleven-amino acid vehicle facilitating biochemical interactions via sliding components along DNA. Nat Commun 7:10202
Geertsema, Hylkje J; Schulte, Aartje C; Spenkelink, Lisanne M et al. (2015) Single-molecule imaging at high fluorophore concentrations by local activation of dye. Biophys J 108:949-956
Pérez-Berná, Ana J; Mangel, Walter F; McGrath, William J et al. (2014) Processing of the l1 52/55k protein by the adenovirus protease: a new substrate and new insights into virion maturation. J Virol 88:1513-24
Mangel, Walter F; San Martín, Carmen (2014) Structure, function and dynamics in adenovirus maturation. Viruses 6:4536-70
Graziano, Vito; McGrath, William J; Suomalainen, Maarit et al. (2013) Regulation of a viral proteinase by a peptide and DNA in one-dimensional space: I. binding to DNA AND to hexon of the precursor to protein VI, pVI, of human adenovirus. J Biol Chem 288:2059-67
McGrath, William J; Graziano, Vito; Zabrocka, Katarzyna et al. (2013) First generation inhibitors of the adenovirus proteinase. FEBS Lett 587:2332-9
Baniecki, Mary Lynn; McGrath, William J; Mangel, Walter F (2013) Regulation of a viral proteinase by a peptide and DNA in one-dimensional space: III. atomic resolution structure of the nascent form of the adenovirus proteinase. J Biol Chem 288:2081-91
Graziano, Vito; Luo, Guobin; Blainey, Paul C et al. (2013) Regulation of a viral proteinase by a peptide and DNA in one-dimensional space: II. adenovirus proteinase is activated in an unusual one-dimensional biochemical reaction. J Biol Chem 288:2068-80
Blainey, Paul C; Graziano, Vito; Pérez-Berná, Ana J et al. (2013) Regulation of a viral proteinase by a peptide and DNA in one-dimensional space: IV. viral proteinase slides along DNA to locate and process its substrates. J Biol Chem 288:2092-102

Showing the most recent 10 out of 27 publications