HSV-1 is a widespread human pathogen. In addition, it serves as an important model to study how pathogenic human herpesviruses regulate their genes during infections. One protein that is critical for HSV-1 gene expression is the immediate-early protein ICP27. In this application, we propose to study two distinct functions of ICP27 that regulate viral gene expression.
In Specific Aim 1, we will study how ICP27 stimulates mRNA accumulation from delayed-early (DE) and late (L) target genes. The current leading model for how ICP27 turns on viral genes is that it functions as a mRNA export factor that transports intronless viral transcripts to the cytoplasm. However, this model cannot readily explain how ICP27 dramatically promotes the accumulation of certain viral mRNAs, including that encoding glycoprotein C (gC). Our recent work on the gC gene suggests a novel model in which ICP27 prevents newly transcribed but inherently unstable viral transcripts from being rapidly degraded in the nucleus by a host cell nuclease. This nuclease targets the gC mRNA in response to a specific cis-acting sequence in the body of the message. We have named this sequence the silencing element (SE). Intriguingly, the SE can be transferred to another gene, where it functions both to silence the gene as well as to confer ICP27-dependent expression. In this Aim, we will study how the SE and ICP27 functionally interact to regulate mRNA stability. We will also study how ICP27 regulates other viral genes DE and L genes, as well as the gene for the viral latency-associated transcript (LAT), which we have recently shown is regulated by ICP27 at the level of mRNA stability.
In Specific Aim 2, we will study how ICP27 promotes the retention of introns in viral mRNAs.
This Aim i s based on our recent discovery that the gC gene contains a functional intron, the retention of which is enhanced by ICP27. The spliced transcript encodes a secreted variant of gC, called gCsec. It is not known how ICP27 promotes the retention of introns in mature mRNA. However, very few cellular or viral regulators of intron-retention have been identified, so ICP27 serves as a valuable model to understand how this important cellular process can be regulated. Three models are proposed to explain how ICP27 regulates intron-retention, and experiments are outlined to test these. The second part of this Aim seeks to identify novel introns in the HSV-1 genome that are regulated by ICP27. Viral genes harboring such introns may encode biologically important protein variants, analogous to gCsec. One such intron has already been identified in the UL24 gene, which encodes a protein important for neuronal replication. Together, our studies will illuminate how an essential but poorly understood viral regulatory protein controls the fate of viral mRNAs, and in so doing, helps determine the outcome of HSV-1 infections.

Public Health Relevance

HSV-1 and its closely related cousin HSV-2 are comon human viruses that causes several serious disesases including encephalitis, disseminated newborn infections, and stromal keratitis resulting in blindness. This research will help us better understand the replication of these viruses and other related pathogenic herpesviruses. It is also possible that these studies will lead to novel strategies for therapeutic modalities to prevent or treat herpesvirus infections.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI042737-14
Application #
8458051
Study Section
Special Emphasis Panel (ZRG1-IDM-P (02))
Program Officer
Challberg, Mark D
Project Start
1998-07-01
Project End
2015-04-30
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
14
Fiscal Year
2013
Total Cost
$281,041
Indirect Cost
$94,921
Name
University of Minnesota Twin Cities
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
555917996
City
Minneapolis
State
MN
Country
United States
Zip Code
55455
Christensen, Maria H; Jensen, Søren B; Miettinen, Juho J et al. (2016) HSV-1 ICP27 targets the TBK1-activated STING signalsome to inhibit virus-induced type I IFN expression. EMBO J 35:1385-99
Park, Donglim; Lalli, Joseph; Sedlackova-Slavikova, Lenka et al. (2015) Functional comparison of herpes simplex virus 1 (HSV-1) and HSV-2 ICP27 homologs reveals a role for ICP27 in virion release. J Virol 89:2892-905
Rice, Stephen A; Davido, David J (2013) HSV-1 ICP22: hijacking host nuclear functions to enhance viral infection. Future Microbiol 8:311-21
Park, Donglim; Lengyel, Joy; Rice, Stephen A (2013) Role of immediate early protein ICP27 in the differential sensitivity of herpes simplex viruses 1 and 2 to leptomycin B. J Virol 87:8940-51
Strain, Anna K; Rice, Stephen A (2011) Phenotypic suppression of a herpes simplex virus 1 ICP27 mutation by enhanced transcription of the mutant gene. J Virol 85:5685-90
Horbul, Julie E; Schmechel, Stephen C; Miller, Barrie R L et al. (2011) Herpes simplex virus-induced epithelial damage and susceptibility to human immunodeficiency virus type 1 infection in human cervical organ culture. PLoS One 6:e22638
Bastian, Thomas W; Livingston, Christine M; Weller, Sandra K et al. (2010) Herpes simplex virus type 1 immediate-early protein ICP22 is required for VICE domain formation during productive viral infection. J Virol 84:2384-94
Sedlackova, Lenka; Perkins, Keith D; Meyer, Julia et al. (2010) Identification of an ICP27-responsive element in the coding region of a herpes simplex virus type 1 late gene. J Virol 84:2707-18
Gillis, Peter A; Okagaki, Laura H; Rice, Stephen A (2009) Herpes simplex virus type 1 ICP27 induces p38 mitogen-activated protein kinase signaling and apoptosis in HeLa cells. J Virol 83:1767-77
Sedlackova, Lenka; Perkins, Keith D; Lengyel, Joy et al. (2008) Herpes simplex virus type 1 ICP27 regulates expression of a variant, secreted form of glycoprotein C by an intron retention mechanism. J Virol 82:7443-55

Showing the most recent 10 out of 15 publications