Signal Transducer and Activator of Transcription (STAT) proteins are a family of transcription factors essential for the function of growth factor and cytokine signaling pathways. Stat4, which is activated by IL-12 and IL-23, is critical in the generation of inflammatory responses in vivo. However, the specific functions of Stat4 during inflammatory responses are still unclear. In the previous grant periods, we established roles for Stat4 isoforms in IL-12 responses and inflammatory disease, defined Stat4-dependent chromatin alteration during programming of Th1-specific expression, and defined new roles for Stat4 in the development of inflammatory and regulatory T cell subsets. We have further demonstrated that the function of T-bet, the """"""""master regulator"""""""" of the Th1 phenotype largely relies on Stat4 for its'ability to activate gene expression. In the next proposed period of funding, we will continue our focus on defining the role of Stat4 in cytokine responses and transcriptional control during inflammatory cell differentiation. We will test the hypothesis that Stat4 functions as a central component in the development of inflammatory immunity by coordinating signals from multiple cytokines to confer long lasting changes in gene expression. This will first be explored by defining the sequence of epigenetic modifications, and the requirement for specific enzymes mediating epigenetic modifications, in the Stat4-dependent programming of genes for expression in Th1 cells. We will examine the role of Stat4 in maintaining Th17 responses and the development of allergic inflammation using novel reagents to isolate and track Th17 cell fate. Finally, in a translational Aim, we will define the association of Stat4 isoforms with inflammatory disease in patients with inflammatory bowel disease. Together, these studies will elaborate new information, at the level of genetic regulation, cellular differentiation in mouse models of allergic inflammation, and in patient samples, regarding the regulation of inflammatory immunity and the ability to manipulate immunity in patients with inflammatory disease.

Public Health Relevance

T cell mediated inflammation is required for immunity to many pathogens but also is a critical component of autoimmune disease. These studies focus on a transcription factor, Stat4, which controls T cell function. The experiments described in this proposal will examine the function of Stat4 in controlling gene expression, in T cell differentiation in vivo using mouse models, and in patient samples towards the goal of understanding how this factor regulates inflammation and identify pathways that may be targeted for pharmaceutical intervention.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI045515-12
Application #
8066626
Study Section
Special Emphasis Panel (ZRG1-IMM-J (02))
Program Officer
Mallia, Conrad M
Project Start
1999-08-01
Project End
2015-04-30
Budget Start
2011-05-01
Budget End
2012-04-30
Support Year
12
Fiscal Year
2011
Total Cost
$381,150
Indirect Cost
Name
Indiana University-Purdue University at Indianapolis
Department
Pediatrics
Type
Schools of Medicine
DUNS #
603007902
City
Indianapolis
State
IN
Country
United States
Zip Code
46202
Taghavie-Moghadam, Parésa L; Waseem, Tayab C; Hattler, Julian et al. (2017) STAT4 Regulates the CD8+ Regulatory T Cell/T Follicular Helper Cell Axis and Promotes Atherogenesis in Insulin-Resistant Ldlr-/- Mice. J Immunol 199:3453-3465
Koh, Byunghee; Hufford, Matthew M; Sun, Xin et al. (2017) Etv5 Regulates IL-10 Production in Th Cells. J Immunol 198:2165-2171
Koh, Byunghee; Hufford, Matthew M; Pham, Duy et al. (2016) The ETS Family Transcription Factors Etv5 and PU.1 Function in Parallel To Promote Th9 Cell Development. J Immunol 197:2465-72
Jabeen, Rukhsana; Miller, Lucy; Yao, Weiguo et al. (2015) Altered STAT4 Isoform Expression in Patients with Inflammatory Bowel Disease. Inflamm Bowel Dis 21:2383-92
Taghavie-Moghadam, Parésa L; Gjurich, Breanne N; Jabeen, Rukhsana et al. (2015) STAT4 deficiency reduces the development of atherosclerosis in mice. Atherosclerosis 243:169-78
Ebel, Mark E; Awe, Olufolakemi; Kaplan, Mark H et al. (2015) Diverse inflammatory cytokines induce selectin ligand expression on murine CD4 T cells via p38? MAPK. J Immunol 194:5781-8
Oghumu, Steve; Gupta, Gaurav; Snider, Heidi M et al. (2014) STAT4 is critical for immunity but not for antileishmanial activity of antimonials in experimental visceral leishmaniasis. Eur J Immunol 44:450-9
Pham, Duy; Sehra, Sarita; Sun, Xin et al. (2014) The transcription factor Etv5 controls TH17 cell development and allergic airway inflammation. J Allergy Clin Immunol 134:204-14
Sheng, Wanqiang; Yang, Fan; Zhou, Yi et al. (2014) STAT5 programs a distinct subset of GM-CSF-producing T helper cells that is essential for autoimmune neuroinflammation. Cell Res 24:1387-402
Glosson-Byers, Nicole L; Sehra, Sarita; Stritesky, Gretta L et al. (2014) Th17 cells demonstrate stable cytokine production in a proallergic environment. J Immunol 193:2631-40

Showing the most recent 10 out of 49 publications