The long term goal of this project is to understand the roles of cell surface heparan sulfate in contributing herpes simplex viral infection. Heparan sulfate is a highly sulfated polysaccharide with very complicated saccharide sequences, and is present on the mammalian cell surface and in the extracellular matrix in a large quantity. Although heparan sulfate is a known important cell-surface molecule involved in assisting herpes virus infection for a long time, the relationship between the saccharide structure and its role in assisting herpes viral infection is poorly understood. We propose to conduct a series of biochemical studies to elucidate the structural specificity of the 3-O-sulfated heparan sulfate, which is generated by three different heparan sulfate 3-O-sulfotransferase (3-OST) isoforms, for the binding to herpes envelope glycoprotein D (gD). In particular, we plan to carry out the following projects: 1. Isolation and characterization of the gD-binding oligosaccharides generated by isoform 3 (3-OST-3). We plan to prepare the gD-binding oligosaccharide by incubating purified 3-OST-3 enzyme with a heparan sulfate oligosaccharide library. The gD-binding oligosaccharide will be purified using anion exchange HPLC and gD-affinity column. The structure of the gD-binding oligosaccharide will be determined by chemical and enzymatic degradation approaches coupled with matrix assisted laser desorption/ionization mass spectrometry. We also plan to examine the effect of the purified gD-binding oligosaccharide on viral entry into the cell using a cell-based assay. 2. Characterization of the structures of the gD-binding sites generated by isoform 2 and isoform 4 (3-OST-2 and 3-OST-4). We plan to express and purify 3-OST-2 and 3-OST-4 enzymes. We will also determine the structures of the gD-binding sites within 3-OST-2 and 3-OST-4 modified heparan sulfate. Both 3-OST-2 and 3-OST-4 have recently proved to assist herpes simplex virus 1 entry into the cells, suggesting that 3-OST-2 and 3-OST-4 provide binding sites for gD. In addition, studies of the distribution of 3-OST-2 and 3-OST-4 revealed that both enzymes are highly expressed in human brains. We speculate that herpes virus may utilize 3-OST-2 and 3-OST-4 modified heparan sulfate to infect human brains.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI050050-02
Application #
6511605
Study Section
Pathobiochemistry Study Section (PBC)
Program Officer
Beisel, Christopher E
Project Start
2001-07-15
Project End
2005-05-31
Budget Start
2002-06-01
Budget End
2003-05-31
Support Year
2
Fiscal Year
2002
Total Cost
$217,082
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
078861598
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Xu, Yongmei; Pempe, Elizabeth H; Liu, Jian (2012) Chemoenzymatic synthesis of heparin oligosaccharides with both anti-factor Xa and anti-factor IIa activities. J Biol Chem 287:29054-61
Xu, Yongmei; Wang, Zhen; Liu, Renpeng et al. (2012) Directing the biological activities of heparan sulfate oligosaccharides using a chemoenzymatic approach. Glycobiology 22:96-106
Sheng, Juzheng; Xu, Yongmei; Dulaney, Steven B et al. (2012) Uncovering biphasic catalytic mode of C5-epimerase in heparan sulfate biosynthesis. J Biol Chem 287:20996-1002
Pempe, Elizabeth H; Burch, Tanya C; Law, Courtney J et al. (2012) Substrate specificity of 6-O-endosulfatase (Sulf-2) and its implications in synthesizing anticoagulant heparan sulfate. Glycobiology 22:1353-62
Joglekar, M V; Quintana Diez, P M; Marcus, S et al. (2012) Disruption of PF4/H multimolecular complex formation with a minimally anticoagulant heparin (ODSH). Thromb Haemost 107:717-25
Sheng, Juzheng; Liu, Renpeng; Xu, Yongmei et al. (2011) The dominating role of N-deacetylase/N-sulfotransferase 1 in forming domain structures in heparan sulfate. J Biol Chem 286:19768-76
Tiwari, Vaibhav; Liu, Jian; Valyi-Nagy, Tibor et al. (2011) Anti-heparan sulfate peptides that block herpes simplex virus infection in vivo. J Biol Chem 286:25406-15
Liu, Renpeng; Liu, Jian (2011) Enzymatic placement of 6-O-sulfo groups in heparan sulfate. Biochemistry 50:4382-91
Xu, Yongmei; Masuko, Sayaka; Takieddin, Majde et al. (2011) Chemoenzymatic synthesis of homogeneous ultralow molecular weight heparins. Science 334:498-501
Zhou, Xianxuan; Chandarajoti, Kasemsiri; Pham, Truong Quang et al. (2011) Expression of heparan sulfate sulfotransferases in Kluyveromyces lactis and preparation of 3'-phosphoadenosine-5'-phosphosulfate. Glycobiology 21:771-80

Showing the most recent 10 out of 41 publications