Historically, plague is one of the most devastating epidemic diseases known to mankind (second only to smallpox), resulting overall in more than 200 million deaths related to three recorded plague pandemics. Since Y. pestis has the potential to cause large-scale outbreaks, the WHO has categorized plague as a re-emerging infectious disease, and there is a concern for a possible fourth pandemic because of global warming, resulting in an increased prevalence of plague in rodent hosts. The current relevance of Y. pestis as a bioweapon is due to its high virulence and the development of multi-antibiotic-resistant strains. Although immunization of humans with plague vaccine will discourage the use of Y. pestis as a bioweapon, currently there is no vaccine against plague. During the current funding of the grant, we identified a new antigen (Braun lipoprotein) of Y. pestis that contributed to the development of bubonic and pneumonic plague. Our studies indicated that mice immunized with the mutant strain of Y. pestis deleted for the lpp and pigmentation locus (pgm) genes were protected against developing pneumonic plague caused by the highly virulent Y. pestis CO92 strain. We have now delineated the signaling pathways initiated by Lpp to cause host damage. Most importantly, our data indicated that the lpp mutant was unable to survive within macrophages, which was linked to the down-regulation of a stress response gene (htrA) in this mutant. We inferred from these data that other stress-associated genes (e.g., exoribonucleases) could also be involved in lpp-mediated, attenuated virulence of the bacterium. Indeed, deletion of the gene encoding polynucleotide phosphorylase (PNPase) also attenuated Y. pestis in a mouse model of systemic infection and provided protection against plague. We have proposed 3 specific aims for this grant.
Aim 1 is to generate double mutants of Y. pestis CO92 in which genes encoding plasminogen-activating protease (pla), pnp, and two other predominant exoribonucleases (e.g., rnb [RNase II] and rnr [RNAse R]) will be deleted from the lpp gene minus background strain of Y. pestis CO92. These mutants will be tested for their attenuation in bubonic and pneumonic plague models (mice and rats).
In aim 2, we will characterize protective immune responses of the most highly attenuated mutant in an animal model and the protection afforded by such a mutant against challenge with the parental CO92 strain. We have identified several immunogenic proteins in the WT CO92 strain that reacted with the immune sera of rats infected with CO92 strain. These antigens may represent excellent candidates for addition in the recombinant plague vaccine. Therefore in aim 3, we will first delete these genes from the WT bacterium to demonstrate their effects on bacterial virulence. Second, we will purify such immunogenic proteins and evaluate their protective effects after immunization of mice and rats followed by subsequent infection with the virulent Y. pestis. Overall, our studies are focused on identifying new live-attenuated vaccine strains of Y. pestis and to characterize the new immuno-protective CO92 antigens that could be important for the recombinant plague vaccine.

Public Health Relevance

Y. pestis is a category A select agent and its potential to be used as a biothreat agent has caused significant concerns. In addition, plague represents a re-emerging infectious disease because of an increased number of cases worldwide. Currently, there is no vaccine available against this deadly disease, and hence our efforts are to develop new and novel countermeasures against plague, as well as to study new mechanisms of pathogenesis in Y. pestis.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI064389-09
Application #
8474680
Study Section
Vaccines Against Microbial Diseases (VMD)
Program Officer
Mukhopadhyay, Suman
Project Start
2005-02-01
Project End
2016-04-30
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
9
Fiscal Year
2013
Total Cost
$321,940
Indirect Cost
$110,386
Name
University of Texas Medical Br Galveston
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
800771149
City
Galveston
State
TX
Country
United States
Zip Code
77555
Tao, Pan; Mahalingam, Marthandan; Zhu, Jingen et al. (2018) A Bacteriophage T4 Nanoparticle-Based Dual Vaccine against Anthrax and Plague. MBio 9:
Andersson, Jourdan A; Sha, Jian; Kirtley, Michelle L et al. (2018) Combating Multidrug-Resistant Pathogens with Host-Directed Nonantibiotic Therapeutics. Antimicrob Agents Chemother 62:
Tao, Pan; Mahalingam, Marthandan; Zhu, Jingen et al. (2017) A Bivalent Anthrax-Plague Vaccine That Can Protect against Two Tier-1 Bioterror Pathogens, Bacillus anthracis and Yersinia pestis. Front Immunol 8:687
Andersson, Jourdan A; Sha, Jian; Erova, Tatiana E et al. (2017) Identification of New Virulence Factors and Vaccine Candidates for Yersinia pestis. Front Cell Infect Microbiol 7:448
Sha, Jian; Kirtley, Michelle L; Klages, Curtis et al. (2016) A Replication-Defective Human Type 5 Adenovirus-Based Trivalent Vaccine Confers Complete Protection against Plague in Mice and Nonhuman Primates. Clin Vaccine Immunol 23:586-600
Fitts, Eric C; Andersson, Jourdan A; Kirtley, Michelle L et al. (2016) New Insights into Autoinducer-2 Signaling as a Virulence Regulator in a Mouse Model of Pneumonic Plague. mSphere 1:
Tiner, Bethany L; Sha, Jian; Cong, Yingzi et al. (2016) Immunisation of two rodent species with new live-attenuated mutants of Yersinia pestis CO92 induces protective long-term humoral- and cell-mediated immunity against pneumonic plague. NPJ Vaccines 1:16020
Andersson, Jourdan A; Fitts, Eric C; Kirtley, Michelle L et al. (2016) New Role for FDA-Approved Drugs in Combating Antibiotic-Resistant Bacteria. Antimicrob Agents Chemother 60:3717-29
Ponnusamy, Duraisamy; Fitts, Eric C; Sha, Jian et al. (2015) High-throughput, signature-tagged mutagenic approach to identify novel virulence factors of Yersinia pestis CO92 in a mouse model of infection. Infect Immun 83:2065-81
Tiner, Bethany L; Sha, Jian; Kirtley, Michelle L et al. (2015) Combinational deletion of three membrane protein-encoding genes highly attenuates yersinia pestis while retaining immunogenicity in a mouse model of pneumonic plague. Infect Immun 83:1318-38

Showing the most recent 10 out of 44 publications