Enteric viruses encounter a vast microbial community in the mammalian digestive tract. However, the effect of the intestinal microbiota on enteric viruses is not well understood. Using mouse models, it was recently shown that intestinal bacteria promote infection with three unrelated enteric viruses, poliovirus, reovirus, and mouse mammary tumor virus. The enhanced replication and pathogenesis of these viruses in microbe-containing mice could occur through microbe-dependent effects on the host and/or virus. For the model picornavirus poliovirus, data suggest that bacterial products directly interact with virus particles and increase viral infectivity. Specifically, bacterial surface polysaccharides, such as lipopolysaccharide and peptidoglycan, enhance poliovirus infectivity by enhancing virion stability and aiding attachment to host cells. However, the precise mechanism of polysaccharide-mediated viral infectivity enhancement remains unknown. Similarly, virion and polysaccharide properties required for interaction and subsequent infectivity enhancement are unclear. By understanding specific mechanisms of microbiota-mediated virion infectivity enhancement, novel antiviral approaches are possible. The goal of this work is to define the virion and polysaccharide requirements for interaction and infectivity enhancement, and to examine mechanisms by which bacteria and bacterial surface polysaccharides enhance viral infectivity using poliovirus and Theiler's murine encephalitis virus as tractable picornavirus models. This will be accomplished through four specific aims: 1. Identify poliovirus virion properties required for microbiota/polysaccharide effects, 2. Define polysaccharide properties required for interaction with poliovirus, 3. Examine the mechanism by which polysaccharides enhance poliovirus infectivity, and 4. Examine microbiota effects on another picornavirus, Theiler's murine encephalitis virus (TMEV). It is likely that multiple enteric viruses benefit from the intestinal microbiota. Overall, enteric viruses may have evolved mechanisms to use gut microbes as an environmental sensor to initiate replication at the optimal site in the intestine. Understanding why enteric viruses require intestinal bacteria may inform antiviral and vaccine strategies to limit enteric virus infections.

Public Health Relevance

Viruses that infect the intestinal tract are a major health problem, and how they interact with the gut environment is poorly understood. This work will examine how intestinal bacteria aid enteric viruses. By understanding bacteria-virus interactions in the intestine, new therapeutic and vaccine approaches are possible.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI074668-08
Application #
8875576
Study Section
Virology - B Study Section (VIRB)
Program Officer
Park, Eun-Chung
Project Start
2008-02-15
Project End
2016-06-30
Budget Start
2015-07-01
Budget End
2016-06-30
Support Year
8
Fiscal Year
2015
Total Cost
Indirect Cost
Name
University of Texas Sw Medical Center Dallas
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
800771545
City
Dallas
State
TX
Country
United States
Zip Code
75390
Erickson, Andrea K; Jesudhasan, Palmy R; Mayer, Melinda J et al. (2018) Bacteria Facilitate Enteric Virus Co-infection of Mammalian Cells and Promote Genetic Recombination. Cell Host Microbe 23:77-88.e5
Aguilera, Elizabeth R; Erickson, Andrea K; Jesudhasan, Palmy R et al. (2017) Plaques Formed by Mutagenized Viral Populations Have Elevated Coinfection Frequencies. MBio 8:
Robinson, Christopher M; Wang, Yao; Pfeiffer, Julie K (2017) Sex-Dependent Intestinal Replication of an Enteric Virus. J Virol 91:
Pfeiffer, Julie K; Virgin, Herbert W (2016) Viral immunity. Transkingdom control of viral infection and immunity in the mammalian intestine. Science 351:
Luethy, Lauren N; Erickson, Andrea K; Jesudhasan, Palmy R et al. (2016) Comparison of three neurotropic viruses reveals differences in viral dissemination to the central nervous system. Virology 487:1-10
Wang, Yao; Pfeiffer, Julie K (2016) Emergence of a Large-Plaque Variant in Mice Infected with Coxsackievirus B3. MBio 7:e00119
Erickson, Andrea K; Pfeiffer, Julie K (2015) Spectrum of disease outcomes in mice infected with YFV-17D. J Gen Virol 96:1328-39
Robinson, Christopher M; Pfeiffer, Julie K (2014) Viruses and the Microbiota. Annu Rev Virol 1:55-69
Wang, Yao; Pfeiffer, Julie K (2014) Microbiology: a backup for bacteria. Nature 516:42-3
Robinson, Christopher M; Pfeiffer, Julie K (2014) Virology. Leaping the norovirus hurdle. Science 346:700-1

Showing the most recent 10 out of 20 publications