Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Project (R01)
Project #
5R01AR039201-08
Application #
2079453
Study Section
Orthopedics and Musculoskeletal Study Section (ORTH)
Project Start
1988-09-01
Project End
1998-11-30
Budget Start
1995-12-01
Budget End
1996-11-30
Support Year
8
Fiscal Year
1996
Total Cost
Indirect Cost
Name
Yale University
Department
Surgery
Type
Schools of Medicine
DUNS #
082359691
City
New Haven
State
CT
Country
United States
Zip Code
06520
McCarthy, Thomas L; Centrella, Michael (2015) Prostaglandin dependent control of an endogenous estrogen receptor agonist by osteoblasts. J Cell Physiol 230:1104-14
McCarthy, Thomas L; Centrella, Michael (2015) Androgen receptor activation integrates complex transcriptional effects in osteoblasts, involving the growth factors TGF-? and IGF-I, and transcription factor C/EBP?. Gene 573:129-40
McCarthy, Thomas L; Yun, Zhong; Madri, Joseph A et al. (2014) Stratified control of IGF-I expression by hypoxia and stress hormones in osteoblasts. Gene 539:141-51
McCarthy, Thomas L; Kallen, Caleb B; Centrella, Michael (2011) ?-Catenin independent cross-control between the estradiol and Wnt pathways in osteoblasts. Gene 479:16-28
McCarthy, Thomas L; Centrella, Michael (2010) Novel links among Wnt and TGF-beta signaling and Runx2. Mol Endocrinol 24:587-97
Sigel, A V; Centrella, M; Eghbali-Webb, M (1996) Regulation of proliferative response of cardiac fibroblasts by transforming growth factor-beta 1. J Mol Cell Cardiol 28:1921-9
Sankar, S; Mahooti-Brooks, N; Bensen, L et al. (1996) Modulation of transforming growth factor beta receptor levels on microvascular endothelial cells during in vitro angiogenesis. J Clin Invest 97:1436-46
Sankar, S; Mahooti-Brooks, N; Centrella, M et al. (1995) Expression of transforming growth factor type III receptor in vascular endothelial cells increases their responsiveness to transforming growth factor beta 2. J Biol Chem 270:13567-72