(Verbatim) The long-term goals of this project are to better understand epithelial stem cell biology. Epithelial stem cells are responsible for the continual regeneration and homeostasis of all self-renewing tissues such as the epidermis, hair follicle, and corneal epithelium. We originally identified epithelial stem cells in the limbal epithelium of the cornea, and in the bulge region of the outer root sheath of the hair follicle. Recently, we demonstrated that cytokeratin 15 (K15) is selectively expressed by bulge cells, and our preliminary results show that K15 is also expressed in the limbal epithelium of the cornea. Now, we have isolated the K15 promoter, and we plan to use this as a tool to study the hypothesis that bulge cells play a major role in hair follicle cycling, alopecia, wound healing, and carcinogenesis. Specifically, we plan to: 1. characterize K15 promoter activity during development, throughout the hair follicle cycle and in response to hyperproliferative stimuli. We will test the hypothesis that K15 is preferentially expressed in other sites enriched in epithelial stem cells by examining its expression in corneal epithelium as well. Our primary goal is to develop a transgenic system that can be modulated by exogenous agents (e.g., retinoids, phorbol esters, corticosteroids) so that we can study tissue compartments rich in epithelial stem cells. 2. determine whether sonic hedgehog (shh) and activated beta-catenin, known to cause basal cell carcinomas and hair follicle tumors, respectively, when expressed throughout the epidermal basal layer, cause similar or distinct tumors when targeted to the bulge cells by the K15 promoter in a transgenic system. 3. assess the role of the bulge cells in hair follicle cycling by analyzing the hair cycle in transgenic mice that over-express shh and activated beta-catenin. 4. ablate hair follicle bulge cells in adult transgenic mice carrying a K15 promoter/thymidine kinase suicide gene. This addresses the hypothesis that the bulge contains stem cells responsible for hair follicle cycling, epidermal renewal and sebaceous gland regeneration. We also plan to use this system as a model for studying scarring alopecias. Patients with disorders such as alopecia, basal cell carcinoma, hair follicle tumors, or chronic wounds may ultimately benefit from this research.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Project (R01)
Project #
5R01AR046837-03
Application #
6534498
Study Section
General Medicine A Subcommittee 2 (GMA)
Program Officer
Moshell, Alan N
Project Start
2000-09-30
Project End
2005-08-31
Budget Start
2002-09-01
Budget End
2003-08-31
Support Year
3
Fiscal Year
2002
Total Cost
$345,926
Indirect Cost
Name
University of Pennsylvania
Department
Dermatology
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Gay, Denise L; Yang, Chao-Chun; Plikus, Maksim V et al. (2015) CD133 expression correlates with membrane beta-catenin and E-cadherin loss from human hair follicle placodes during morphogenesis. J Invest Dermatol 135:45-55
Gay, Denise; Kwon, Ohsang; Zhang, Zhikun et al. (2013) Fgf9 from dermal ?? T cells induces hair follicle neogenesis after wounding. Nat Med 19:916-23
Garza, Luis A; Liu, Yaping; Yang, Zaixin et al. (2012) Prostaglandin D2 inhibits hair growth and is elevated in bald scalp of men with androgenetic alopecia. Sci Transl Med 4:126ra34
Garza, Luis A; Yang, Chao-Chun; Zhao, Tailun et al. (2011) Bald scalp in men with androgenetic alopecia retains hair follicle stem cells but lacks CD200-rich and CD34-positive hair follicle progenitor cells. J Clin Invest 121:613-22
Yang, Chao-Chun; Cotsarelis, George (2010) Review of hair follicle dermal cells. J Dermatol Sci 57:2-11
Ito, Mayumi; Liu, Yaping; Yang, Zaixin et al. (2005) Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med 11:1351-4
Morris, Rebecca J; Liu, Yaping; Marles, Lee et al. (2004) Capturing and profiling adult hair follicle stem cells. Nat Biotechnol 22:411-7
Liu, Yaping; Lyle, Stephen; Yang, Zaixin et al. (2003) Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge. J Invest Dermatol 121:963-8
Xu, Xiaowei; Lyle, Stephen; Liu, Yaping et al. (2003) Differential expression of cyclin D1 in the human hair follicle. Am J Pathol 163:969-78