Similarly to the formation of other organs, skeletogenesis involves two broad classes of regulatory factors. Patterning factors control the shape, size and number of skeletal element, as well as initial decisions regarding the body plan of the embryo, whereas differentiation factors control the fate of the constituent cells of the skeleton. Previous cell biological experiments suggested that osteoblast differentiation occurs along a multistep pathway. More recently, the transcription factor Cbfa1/Runx2 was shown to be needed for osteoblast differentiation. Very recently, we have discovered that a novel member of the Kruppel family of transcription factors, called Osterix (Osx), is required for bone formation and osteoblast differentiation. Osx null mice have no membranous, and no endochondral bones, although chondrocyte differentiation and cartilage formation occur normally. Furthermore, our experiments indicate that Osx acts downstream of Cbfa1/Runx2. This application proposes to characterize the mechanisms by which Osx controls osteoblast differentiation. We plan to examine the extent of the osteoblast-genetic program that is controlled by Osx and identify sequences in target genes that directly mediate the transcriptional activation by Osx of these genes in osteoblasts in vivo. Our studies will also identify the proteins that either physically or functionally interact with Osx, or control its activity. Finally, we will determine whether Osx is a negative regulator of Sox9 expression and of the chondrocyte differentiation program. Overall, these experiments should greatly improve our understanding of the molecular mechanisms of osteoblast differentiation.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Project (R01)
Project #
5R01AR049072-03
Application #
6796659
Study Section
Orthopedics and Musculoskeletal Study Section (ORTH)
Program Officer
Sharrock, William J
Project Start
2002-09-01
Project End
2007-08-31
Budget Start
2004-09-01
Budget End
2005-08-31
Support Year
3
Fiscal Year
2004
Total Cost
$437,915
Indirect Cost
Name
University of Texas MD Anderson Cancer Center
Department
Genetics
Type
Other Domestic Higher Education
DUNS #
800772139
City
Houston
State
TX
Country
United States
Zip Code
77030
Samsa, William E; Zhou, Xin; Zhou, Guang (2017) Signaling pathways regulating cartilage growth plate formation and activity. Semin Cell Dev Biol 62:3-15
Chen, Qin; Zhang, Liping; de Crombrugghe, Benoit et al. (2015) Mesenchyme-specific overexpression of nucleolar protein 66 in mice inhibits skeletal growth and bone formation. FASEB J 29:2555-65
Chen, Qin; Sinha, Krishna; Deng, Jian Min et al. (2015) Mesenchymal Deletion of Histone Demethylase NO66 in Mice Promotes Bone Formation. J Bone Miner Res 30:1608-17
Zhou, Xin; von der Mark, Klaus; Henry, Stephen et al. (2014) Chondrocytes transdifferentiate into osteoblasts in endochondral bone during development, postnatal growth and fracture healing in mice. PLoS Genet 10:e1004820
Co?kun, Süleyman; Chao, Hsu; Vasavada, Hema et al. (2014) Development of the fetal bone marrow niche and regulation of HSC quiescence and homing ability by emerging osteolineage cells. Cell Rep 9:581-90
Sinha, Krishna M; Yasuda, Hideyo; Zhou, Xin et al. (2014) Osterix and NO66 histone demethylase control the chromatin of Osterix target genes during osteoblast differentiation. J Bone Miner Res 29:855-65
Sinha, Krishna M; Zhou, Xin (2013) Genetic and molecular control of osterix in skeletal formation. J Cell Biochem 114:975-84
Chen, Qin; Liu, Wenbin; Sinha, Krishna M et al. (2013) Identification and characterization of microRNAs controlled by the osteoblast-specific transcription factor Osterix. PLoS One 8:e58104
Baek, Wook-Young; Kim, Young-Ji; de Crombrugghe, Benoit et al. (2013) Osterix is required for cranial neural crest-derived craniofacial bone formation. Biochem Biophys Res Commun 432:188-92
Tang, Wanjin; Yang, Fan; Li, Yang et al. (2012) Transcriptional regulation of Vascular Endothelial Growth Factor (VEGF) by osteoblast-specific transcription factor Osterix (Osx) in osteoblasts. J Biol Chem 287:1671-8

Showing the most recent 10 out of 25 publications