In the intervertebral disc, the cells of the nucleus pulposus (NP) function in a unique environmental niche, characterized by a very limited vascular supply that imposes metabolic constraints on the disc cells and a proteoglycan-rich extracellular matrix. We have shown that the oxygen tension of the NP is very low and unlike all other tissues, cells of the NP exhibit constitutive expression of HIF-1a. We advance the new hypothesis that constitutive expression of HIF-1a serves to adapt the NP cells to their avascular environment and that changes in HIF-1 activity is required for their survival and function. The first Specific Aims is to test the hypotheses that high constitutive HIF-1a expression is required for survival of the NP cells in the hypoxic disc;to investigate mechanisms regulating constitutive expression and activity of HIF-1a;using tissue derived from human degenerative discs to correlate NP HIF-1 activity with degeneration and susceptibility to apoptosis. We will transiently and stably suppress HIF-1a and assess the impact of HIF-1a downregulation on cell survival and death. We will then restore HIF-1a expression in suppressed cells and evaluate survival, apoptosis and cell phenotype. We will also determine if changes in expression of pVHL, FIH and PHDs regulate HIF-1a expression and transcriptional activity in NP cells. We will use cells isolated form clinical human disc samples, with varying degree of degeneration, to determine if susceptibility to apoptogen treatment is linked to endogenous HIF-1a activity and to the level of degeneration. The second specific aim is to test the hypothesis that constitutive HIF-1a expression regulates proteoglycan synthesis and GAG chain formation and sulfation;to correlate HIF-1 activity to proteoglycan synthesis in human degenerative disc samples. We will determine the role of constitutive HIF-1a in the expression and synthesis of aggrecan core protein, a molecule that has a HIF-1 responsive promoter element. In addition, we will evaluate the role of HIF-1a in regulating expression of enzymes required for GAG synthesis (glucuronosyltransferase I;GlcAT-I) and chondroitin sulfation (chondroitin-4-O-sulfosyl transferase 2;C4ST-2). We will investigate if proteoglycan synthesis by cells isolated form clinical human disc samples is linked to HIF-1a activity. The last Specific Aim is to develop a rabbit model with suppression of HIF-1a in NP cells using lentiviral HIF-1a-SiRNA;to learn if inactivation of HIF-1a promotes a loss of cellularity, a decrease in proteoglycan synthesis and degeneration of the intervertebral disc. To complement the in vivo studies, and to investigate early cellular events in NP degeneration, we will perform disc organ culture studies using floxed-HIF-1a mouse. Inactivation of the HIF-1a gene in organ cultured discs will be achieved by injecting adenovirus expressing cre recombinase. The information provided by proposed studies will provide insights into mechanisms of early degenerative changes in the NP cells and provide foundation for development of interventional strategies to prevent degenerative disc disease.

Public Health Relevance

The incidence of low back pain, which is often linked to degenerative changes in the intervertebral disc, is extraordinary high with annual costs to the US health care industry exceeding 33 billion dollars. None of the current therapies can completely restore the function of the degenerative intervertebral disc and thereby prevent further deterioration of the compromised spine. The proposed studies will provide insights into mechanisms of early degenerative changes in the disc and may permit development of interventional strategies to prevent degenerative disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Project (R01)
Project #
5R01AR055655-04
Application #
8064681
Study Section
Skeletal Biology Structure and Regeneration Study Section (SBSR)
Program Officer
Tyree, Bernadette
Project Start
2008-08-01
Project End
2013-05-31
Budget Start
2011-06-01
Budget End
2012-05-31
Support Year
4
Fiscal Year
2011
Total Cost
$323,041
Indirect Cost
Name
Thomas Jefferson University
Department
Orthopedics
Type
Schools of Medicine
DUNS #
053284659
City
Philadelphia
State
PA
Country
United States
Zip Code
19107
Gorth, Deborah J; Shapiro, Irving M; Risbud, Makarand V (2018) Transgenic mice overexpressing human TNF-? experience early onset spontaneous intervertebral disc herniation in the absence of overt degeneration. Cell Death Dis 10:7
Choi, Hyowon; Chaiyamongkol, Weera; Doolittle, Alexandra C et al. (2018) COX-2 expression mediated by calcium-TonEBP signaling axis under hyperosmotic conditions serves osmoprotective function in nucleus pulposus cells. J Biol Chem 293:8969-8981
Silagi, Elizabeth S; Schoepflin, Zachary R; Seifert, Erin L et al. (2018) Bicarbonate Recycling by HIF-1-Dependent Carbonic Anhydrase Isoforms 9 and 12 Is Critical in Maintaining Intracellular pH and Viability of Nucleus Pulposus Cells. J Bone Miner Res 33:338-355
Pan, Hehai; Strickland, Adam; Madhu, Vedavathi et al. (2018) RNA binding protein HuR regulates extracellular matrix gene expression and pH homeostasis independent of controlling HIF-1? signaling in nucleus pulposus cells. Matrix Biol :
Silagi, Elizabeth S; Shapiro, Irving M; Risbud, Makarand V (2018) Glycosaminoglycan synthesis in the nucleus pulposus: Dysregulation and the pathogenesis of disc degeneration. Matrix Biol 71-72:368-379
Choi, Hyowon; Tessier, Steven; Silagi, Elizabeth S et al. (2018) A novel mouse model of intervertebral disc degeneration shows altered cell fate and matrix homeostasis. Matrix Biol 70:102-122
Johnson, Zariel I; Doolittle, Alexandra C; Snuggs, Joseph W et al. (2017) TNF-? promotes nuclear enrichment of the transcription factor TonEBP/NFAT5 to selectively control inflammatory but not osmoregulatory responses in nucleus pulposus cells. J Biol Chem 292:17561-17575
Liu, Chao; Choi, Hyowon; Johnson, Zariel I et al. (2017) Lack of evidence for involvement of TonEBP and hyperosmotic stimulus in induction of autophagy in the nucleus pulposus. Sci Rep 7:4543
Schoepflin, Zachary R; Silagi, Elizabeth S; Shapiro, Irving M et al. (2017) PHD3 is a transcriptional coactivator of HIF-1? in nucleus pulposus cells independent of the PKM2-JMJD5 axis. FASEB J 31:3831-3847
Binch, Abbie L A; Shapiro, Irving M; Risbud, Makarand V (2016) Syndecan-4 in intervertebral disc and cartilage: Saint or synner? Matrix Biol 52-54:355-362

Showing the most recent 10 out of 60 publications