Dong, Zhizhong; Zuber, Christian; Pierce, Michael et al. (2014) Reduction in Golgi apparatus dimension in the absence of a residential protein, N-acetylglucosaminyltransferase V. Histochem Cell Biol 141:153-64
|
Miwa, Hazuki E; Koba, Wade R; Fine, Eugene J et al. (2013) Bisected, complex N-glycans and galectins in mouse mammary tumor progression and human breast cancer. Glycobiology 23:1477-90
|
Müller, Reto; Jenny, Andreas; Stanley, Pamela (2013) The EGF repeat-specific O-GlcNAc-transferase Eogt interacts with notch signaling and pyrimidine metabolism pathways in Drosophila. PLoS One 8:e62835
|
Miwa, Hazuki E; Song, Yinghui; Alvarez, Richard et al. (2012) The bisecting GlcNAc in cell growth control and tumor progression. Glycoconj J 29:609-18
|
Zheng, Tianqing; Jiang, Hao; Gros, Marilyn et al. (2011) Tracking N-acetyllactosamine on cell-surface glycans in vivo. Angew Chem Int Ed Engl 50:4113-8
|
Varki, Ajit; Cummings, Richard D; Esko, Jeffrey D et al. (2009) Symbol nomenclature for glycan representation. Proteomics 9:5398-9
|
Chen, Wei; Stanley, Pamela (2003) Five Lec1 CHO cell mutants have distinct Mgat1 gene mutations that encode truncated N-acetylglucosaminyltransferase I. Glycobiology 13:43-50
|
Haltiwanger, Robert S; Stanley, Pamela (2002) Modulation of receptor signaling by glycosylation: fringe is an O-fucose-beta1,3-N-acetylglucosaminyltransferase. Biochim Biophys Acta 1573:328-35
|
Lee, J; Sundaram, S; Shaper, N L et al. (2001) Chinese hamster ovary (CHO) cells may express six beta 4-galactosyltransferases (beta 4GalTs). Consequences of the loss of functional beta 4GalT-1, beta 4GalT-6, or both in CHO glycosylation mutants. J Biol Chem 276:13924-34
|
Chen, W; Unligil, U M; Rini, J M et al. (2001) Independent Lec1A CHO glycosylation mutants arise from point mutations in N-acetylglucosaminyltransferase I that reduce affinity for both substrates. Molecular consequences based on the crystal structure of GlcNAc-TI. Biochemistry 40:8765-72
|
Showing the most recent 10 out of 22 publications