The long-term objective of our research is to identify innovative strategies for colon cancer prevention and to apply the knowledge from preclinical efficacy studies to use with individuals at high-risk for colon cancer as a means of prevention. Current evidence suggests that a diet rich in n-3 polyunsaturated fatty acids (n-3 PUFAs) and cyclooxygenase (COX)-2 inhibitors, such as celecoxib suppress azoxymethane (AOM)-induced colon carcinogenesis in F344 rats. Although colon tumor inhibition by COX-2 inhibitors is much more effective than traditional NSAIDs, high doses of COX-2 inhibitors have caused some side effects in humans. The preclinical experiments proposed in this application will provide compelling evidence that the aggregate action of n-3 PUFA-rich diet in combination with a COX-2 inhibitor, celecoxib would be significant, while side effects induced by the COX-2 inhibitor would be minimized. The proposed studies will evaluate two hypothesis: a) There is synergism in the mechanisms of action of COX-2 inhibitors and n-3 PUFAs, the former inhibiting carcinogenesis through modulation of generation of eicosanoids, angiogenesis and apoptosis while the latter suppressing colon carcinogenesis through NO pathways, cell differentiation and apoptosis, b) the combination of a diet rich in n-3 PUFAs with a COX-2 inhibitor will increase the efficacy by modulating synergistically the above molecular parameters.
The specific aims are: 1) Determine the efficacy of a low dose of celecoxib administered in n-3 PUFA rich diet as compared when a high dose of this agent administered in a high-fat, Western style diet containing mixed lipids in AOM-induced colon carcinogenesis in F344 rats. 2) Determine the combined effects of celecoxib administered in n-3 PUFA-rich diet on colon cancer-related genes in colonic mucosa and tumors of rats. We will focus on apoptotic genes, Bcl-2, NF?B and on the eicosanoid- and NO-pathways including COX-2, LOX, and iNOS and their interactions with other functional groups of genes in colon carcinogenesis using DNA microarrays, RT-PCR and Western Blot analysis. Clear delineation of the synergistic effects in preclinical models will allow the rational design of human clinical trials.
Showing the most recent 10 out of 48 publications