Retroviruses are RNA viruses capable of inducing various diseases including cancers and immunodeficiencies. Many retroviruses cause cellular transformation because they carry oncogenes transduced from cellular genes. Due to their high efficiency in transferring genes, retroviral vectors, ironically, are a preferred means of introducing genes into cells for gene therapy. The long-term goal of this proposal is to understand on the molecular level the mechanism by which Murine Leukemia Viruses (MuLV) choose and enter their host cells. The viral gene products which are known to be required for the entry of the virus into the cells (env gene products) will be studied genetically and biochemically. Identification of the various functional domains of the env gene products provides the basis for future experiments aimed at targeting the entry of the virus to specific cell types and facilitates the use of retroviruses for gene therapy. The env gene products from two MuLV isolates with differing host-range will be analyzed and compared. Linker-insertion mutations will be generated throughout the env gene of the Moloney ecotropic MuLV, which only infects rodent cells, as well as the amphotropic 4070A isolate, which can infect many mammalian species. The effects of the mutations on the viral life-cycle will be determined. Functional domains within the proteins will be localized by the clustering of mutations with identical phenotypes. Regions required for correct processing and transport to the cell surface, association with the viral particle, syncytium formation, and receptor binding may be identified. A second approach to identify regions required for receptor binding and recognition will involve the generation of hybrid amphotropic/ecotropic env gene products. Variations within the env gene alter the host-range of the virus and direct the entry using differing host-cell receptors. Hybrid env molecules in which the majority of the amphotropic env gene has replaced the ecotropic gene has produced virus with the amphotropic host- range. Using cloning techniques, various sections of the amphotropic env gene will be systematically introduced into the ecotropic backbone. The host-range of the hybrid gene product will be examined and regions required for the receptor binding and tropism will be determined. env gene products with altered oligosaccharide moieties will be generated to address the role of the multiple glycosylations. The potential glycosylation sites will be changed using oligonucleotide-directed mutagenesis. The effects of the loss of the individual sites as well as multiple glycosylation sites will be examined. The final processed form of the env gene product contains two proteins, SU and TM, are covalently bound through a disulfide bridge. the cysteine residue involved in this bond in the TM protein will be identified.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA049932-03
Application #
3194280
Study Section
Experimental Virology Study Section (EVR)
Project Start
1990-01-01
Project End
1994-12-31
Budget Start
1992-01-01
Budget End
1992-12-31
Support Year
3
Fiscal Year
1992
Total Cost
Indirect Cost
Name
University of Medicine & Dentistry of NJ
Department
Type
Schools of Medicine
DUNS #
622146454
City
Piscataway
State
NJ
Country
United States
Zip Code
08854
Valdivieso-Torres, Leonardo; Sarangi, Anindita; Whidby, Jillian et al. (2016) Role of Cysteines in Stabilizing the Randomized Receptor Binding Domains within Feline Leukemia Virus Envelope Proteins. J Virol 90:2971-80
Wu, Dai-Tze; Roth, Monica J (2014) MLV based viral-like-particles for delivery of toxic proteins and nuclear transcription factors. Biomaterials 35:8416-26
Zhang, Xia; Sarangi, Anindita; Wu, Dai-Tze et al. (2013) Gene delivery in a mouse xenograft of a retargeted retrovirus to a solid 143B osteosarcoma. Virol J 10:194
Wu, Dai-Tze; Aiyer, Sriram; Villanueva, Rodrigo A et al. (2013) Development of an enzyme-linked immunosorbent assay based on the murine leukemia virus p30 capsid protein. J Virol Methods 193:332-6
Mazari, Peter M; Roth, Monica J (2013) Library screening and receptor-directed targeting of gammaretroviral vectors. Future Microbiol 8:107-21
Wu, Dai-tze; Seita, Yasunari; Zhang, Xia et al. (2012) Antibody-directed lentiviral gene transduction for live-cell monitoring and selection of human iPS and hES cells. PLoS One 7:e34778
Mazari, Peter M; Argaw, Takele; Valdivieso, Leonardo et al. (2012) Comparison of the convergent receptor utilization of a retargeted feline leukemia virus envelope with a naturally-occurring porcine endogenous retrovirus A. Virology 427:118-26
Zhang, Xia; Roth, Monica J (2010) Antibody-directed lentiviral gene transduction in early immature hematopoietic progenitor cells. J Gene Med 12:945-55
Mazari, Peter M; Linder-Basso, Daniela; Sarangi, Anindita et al. (2009) Single-round selection yields a unique retroviral envelope utilizing GPR172A as its host receptor. Proc Natl Acad Sci U S A 106:5848-53
Schneider, William M; Zheng, Haiyan; Cote, Marie L et al. (2008) The MuLV 4070A G541R Env mutation decreases the stability and alters the conformation of the TM ectodomain. Virology 371:165-74

Showing the most recent 10 out of 32 publications