Helicobacter hepaticus is responsible for a new murine disease, """"""""H. hepaticus induced hepatitis"""""""". We have reproduced this type of chronic active hepatitis experimentally in both SPF inbred mice and outbred germfree mice and determined that H. hepaticus is widespread in mouse colonies and causes a persistent hepatitis in susceptible strains of mice. H. hepaticus also persistently colonizes the lower gastrointestinal tract of both A/JCr susceptible and resistant C57Bl/6 mice but does not cause liver lesions in resistant strains of mice. In the A/JCr and B6C3F1 the organism induces hepatic adenomas and hepatocellular carcinomas. We have determined the morphological stages of the H. hepaticus induced liver lesions in the A/JCr which consist of a series of progressive changes beginning with chronic active hepatitis and vasculitis leading to bile duct and oval cell hyperplasia with increased hepatocyte proliferation and hepatomegaly, development of clear cell foci and nodular hyperplasia and finally culminating in adenomas and hepatocellular carcinoma. Several key features of H.hepaticus' role in carcinogenesis have been recently elucidated which strongly suggest H. hepaticus acts as a tumor promoter. Experiments designed to further characterize and elucidate mechanisms responsible for H. hepaticus biological effects will continue to explore in vivo molecular events operable in establishing chronic hepatitis and promotion of tumorigenesis. In this proposal we plan to 1) Utilize isogenic mutants of H. hepaticus lacking putative virulence determinants to determine effects of these bacterial gene products on chronic hepatic inflammation and promotion of tumorigenesis. 2) Utilize congenic recombinant mice to characterize and map the genetic difference(s) responsible for determining the differential susceptibility of strains A/J and C57BL/6 to H. hepaticus induced hepatitis and liver tumors and 3) Determine if H. hepaticus infection promotes onset and progression of hepatitis and tumor formation in mice initiated with hepatic carcinogens and ascertain whether the sequential events operable in tumor induction can be interrupted by eradication of H. hepaticus at different stages of infection.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA067529-08
Application #
6489230
Study Section
Bacteriology and Mycology Subcommittee 2 (BM)
Program Officer
Daschner, Phillip J
Project Start
1995-05-01
Project End
2003-12-31
Budget Start
2002-01-01
Budget End
2002-12-31
Support Year
8
Fiscal Year
2002
Total Cost
$300,521
Indirect Cost
Name
Massachusetts Institute of Technology
Department
Veterinary Sciences
Type
Other Domestic Higher Education
DUNS #
City
Cambridge
State
MA
Country
United States
Zip Code
02139
Esmail, Michael Y; Bacon, Rebecca; Swennes, Alton G et al. (2016) Helicobacter Species Identified in Captive Sooty Mangabeys (Cercocebus atys) with Metastatic Gastric Adenocarcinoma. Helicobacter 21:175-85
Burns, Monika; Muthupalani, Sureshkumar; Ge, Zhongming et al. (2015) Helicobacter pylori Infection Induces Anemia, Depletes Serum Iron Storage, and Alters Local Iron-Related and Adult Brain Gene Expression in Male INS-GAS Mice. PLoS One 10:e0142630
Caron, Tyler J; Scott, Kathleen E; Fox, James G et al. (2015) Tight junction disruption: Helicobacter pylori and dysregulation of the gastric mucosal barrier. World J Gastroenterol 21:11411-27
Ge, Zhongming; Feng, Yan; Woods, Stephanie E et al. (2015) Spatial and temporal colonization dynamics of segmented filamentous bacteria is influenced by gender, age and experimental infection with Helicobacter hepaticus in Swiss Webster mice. Microbes Infect 17:16-22
Shen, Zeli; Feng, Yan; Rickman, Barry et al. (2015) Helicobacter cinaedi induced typhlocolitis in Rag-2-deficient mice. Helicobacter 20:146-55
Lertpiriyapong, Kvin; Whary, Mark T; Muthupalani, Sureshkumar et al. (2014) Gastric colonisation with a restricted commensal microbiota replicates the promotion of neoplastic lesions by diverse intestinal microbiota in the Helicobacter pylori INS-GAS mouse model of gastric carcinogenesis. Gut 63:54-63
Hartwell, Hadley J; Petrosky, Keiko Y; Fox, James G et al. (2014) Prolactin prevents hepatocellular carcinoma by restricting innate immune activation of c-Myc in mice. Proc Natl Acad Sci U S A 111:11455-60
Whary, Mark T; Muthupalani, Sureshkumar; Ge, Zhongming et al. (2014) Helminth co-infection in Helicobacter pylori infected INS-GAS mice attenuates gastric premalignant lesions of epithelial dysplasia and glandular atrophy and preserves colonization resistance of the stomach to lower bowel microbiota. Microbes Infect 16:345-55
Nguyen, Deanna D; Muthupalani, Suresh; Goettel, Jeremy A et al. (2013) Colitis and colon cancer in WASP-deficient mice require helicobacter species. Inflamm Bowel Dis 19:2041-50
Muthupalani, Sureshkumar; Ge, Zhongming; Feng, Yan et al. (2012) Systemic macrophage depletion inhibits Helicobacter bilis-induced proinflammatory cytokine-mediated typhlocolitis and impairs bacterial colonization dynamics in a BALB/c Rag2-/- mouse model of inflammatory bowel disease. Infect Immun 80:4388-97

Showing the most recent 10 out of 131 publications