An essential step during the life cycle of human immunodeficiency virus type 1 (HIV-1) and other retroviruses is integration of a double-stranded DNA copy of the viral genome into a host cell chromosome. Integration of retroviral DNA is catalyzed by the viral protein integrase. The process is non-specific but is not random, with some integration sites used at much greater frequencies than others. The site of integration has important consequences to both the invading virus and the susceptible host, and the mechanism that determines target site selection is not well understood. The long-term objective of this proposal is to further understand the mechanism of HIV-1 integration and the process that controls the selection of host DNA sites for integration, and to devise a method of directing integration into a predetermined site.
The specific aims are (1) to examine the distribution and preference of HIV-1 integration sites in the human genome and identify viral and host factors that affect target site selection, and (2) to study site-directed integration of retroviral DNA using integrase fused to a sequence-specific DNA-binding protein.
In Aim 1, a newly developed assay will be optimized to sequence and map a large number of HIV-1 integration sites. The assay will be used to detect viral or host factors that can influence target site selection and determine whether the alteration can cause significant biological outcomes. The hypothesis that HIV-1 integration into certain chromosomal sites can preferentially lead to latency, a major contributing factor to the inability of current treatments to eradicate the virus, will be tested.
Aim 2 will analyze the efficiency and specificity of a new class of integrase fusion proteins to mediate site directed integration in cultured cells. These fusion proteins consist of HIV-1 integrase and a poly-zinc finger E2C, a synthetic DNA-binding protein that specifically binds to an 18-bp sequence with high affinity. These synthetic proteins can also be modified to potentially recognize any desired sequences. A new strategy in which the HIV-1 integrase donor DNA complex is delivered to a DNA site of interest through protein-protein interactions will also be tested. The availability of an efficient and high throughput assay for examining the distribution and preference of integration sites will yield a better understanding of target site selection during retroviral infection and provide a better assessment on the relative risk of insertional mutagenesis. Studies on site-directed integration using fusion proteins may lead to a new approach for inserting exogenous genes at specific sites, which will have a wide application as an experimental tool and improve the therapeutic application of current retrovirus-based vectors for gene delivery. ? ?

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
3R01CA068859-10A1S1
Application #
6945559
Study Section
AIDS Molecular and Cellular Biology Study Section (AMCB)
Program Officer
Rosenfeld, Bobby
Project Start
1995-09-01
Project End
2009-03-31
Budget Start
2004-04-01
Budget End
2005-03-31
Support Year
10
Fiscal Year
2004
Total Cost
$54,162
Indirect Cost
Name
University of California Los Angeles
Department
Biochemistry
Type
Schools of Arts and Sciences
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Kim, Sanggu; Kim, Namshin; Presson, Angela P et al. (2014) Dynamics of HSPC repopulation in nonhuman primates revealed by a decade-long clonal-tracking study. Cell Stem Cell 14:473-85
Kim, Sanggu; Kim, Yun-Cheol; Qi, Hangfei et al. (2011) Efficient identification of human immunodeficiency virus type 1 mutants resistant to a protease inhibitor by using a random mutant library. Antimicrob Agents Chemother 55:5090-8
Presson, Angela P; Kim, Namshin; Xiaofei, Yan et al. (2011) Methodology and software to detect viral integration site hot-spots. BMC Bioinformatics 12:367
Kim, Sanggu; Rusmevichientong, Alice; Dong, Beihua et al. (2010) Fidelity of target site duplication and sequence preference during integration of xenotropic murine leukemia virus-related virus. PLoS One 5:e10255
Briones, Marisa S; Chow, Samson A (2010) A new functional role of HIV-1 integrase during uncoating of the viral core. Immunol Res 48:14-26
Briones, Marisa S; Dobard, Charles W; Chow, Samson A (2010) Role of human immunodeficiency virus type 1 integrase in uncoating of the viral core. J Virol 84:5181-90
Kim, Sanggu; Kim, Namshin; Presson, Angela P et al. (2010) High-throughput, sensitive quantification of repopulating hematopoietic stem cell clones. J Virol 84:11771-80
Vatakis, Dimitrios N; Kim, Sanggu; Kim, Namshin et al. (2009) Human immunodeficiency virus integration efficiency and site selection in quiescent CD4+ T cells. J Virol 83:6222-33
Woodward, Cora L; Prakobwanakit, Sarin; Mosessian, Sherly et al. (2009) Integrase interacts with nucleoporin NUP153 to mediate the nuclear import of human immunodeficiency virus type 1. J Virol 83:6522-33
Wilkinson, Thomas A; Januszyk, Kurt; Phillips, Martin L et al. (2009) Identifying and characterizing a functional HIV-1 reverse transcriptase-binding site on integrase. J Biol Chem 284:7931-9

Showing the most recent 10 out of 29 publications