Understanding mechanisms that regulate ECM degradation is of paramount importance, not only to biochemistry and cell biology, but also to the treatment of malignancies. Our studies will provide information about mechanisms involved in the control of ECM proteolysis. Our hypothesis is that there are specific interactions of MMPs with molecular receptors on cell surfaces. Our data suggest that MT1-MMP, TIMP-2, and alphavbeta3 integrin could jointly control activation and docking of secretory MMP-2. MT1-MMP initiates activation of MMP-2 and the alphavbeta3 integrin governs further autocatalytic maturation of MMP-2. A disulfide bridge with an intracellular, presumably cytoskeleton, protein can direct MT1-MMP to discrete regions on the cell surface in an immediate proximity of alphavbeta3. This could be a link between continually changing cell shape, cytoskeleton and focal proteolysis of the ECM. Since docking co-exists with MMP-2 activation at the cell surface, the identified mechanisms illustrate how latent MMP-2 produced by the stroma could be specifically localized at tumors as the mature enzyme. Furthermore, MT1-MMP-mediated cleavage generates the modified, shorter beta3 integrin subunit that can facilitate migration of cells. We suggest that these are basic mechanisms to spatially and temporally control focal proteolysis. These mechanisms can enable tumor cells to separate active MMP-2 from an excess of its zymogen and specifically increase levels of the active enzyme on tumor cell surfaces, thereby facilitating directional invasion of the cells.
Our aims are: 1) To enzymologically characterize MT1-MMP and to complete the characterization of the MMP-2 activation cascade; 2) To functionally and structurally characterize MT1-MMP-mediated modifications of the alphavbeta3 in malignant progression and identify novel targets for prognosis and inhibition of malignancies; 4) To identify critical functional and structural elements of the C-terminal hemopexin-like domains of MMP-2 and MT1-MMP and to test peptide inhibitors derived from their sequences. We anticipate that novel methods of tumor prognosis and therapy will emerge from our studies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA077470-03
Application #
6207196
Study Section
Pathology B Study Section (PTHB)
Program Officer
Mohla, Suresh
Project Start
1999-07-01
Project End
2004-04-30
Budget Start
2000-05-01
Budget End
2001-04-30
Support Year
3
Fiscal Year
2000
Total Cost
$309,960
Indirect Cost
Name
Sanford-Burnham Medical Research Institute
Department
Type
DUNS #
009214214
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Cieplak, Piotr; Strongin, Alex Y (2017) Matrix metalloproteinases - From the cleavage data to the prediction tools and beyond. Biochim Biophys Acta Mol Cell Res 1864:1952-1963
Chernov, Andrei V; Reyes, Leticia; Peterson, Scott et al. (2015) Depletion of CG-Specific Methylation in Mycoplasma hyorhinis Genomic DNA after Host Cell Invasion. PLoS One 10:e0142529
Chernov, Andrei V; Reyes, Leticia; Xu, Zhenkang et al. (2015) Mycoplasma CG- and GATC-specific DNA methyltransferases selectively and efficiently methylate the host genome and alter the epigenetic landscape in human cells. Epigenetics 10:303-18
Kukreja, Muskan; Shiryaev, Sergey A; Cieplak, Piotr et al. (2015) High-Throughput Multiplexed Peptide-Centric Profiling Illustrates Both Substrate Cleavage Redundancy and Specificity in the MMP Family. Chem Biol 22:1122-33
Golubkov, Vladislav S; Strongin, Alex Y (2014) Downstream signaling and genome-wide regulatory effects of PTK7 pseudokinase and its proteolytic fragments in cancer cells. Cell Commun Signal 12:15
Scott, David W; Chan, Fong Chun; Hong, Fangxin et al. (2013) Gene expression-based model using formalin-fixed paraffin-embedded biopsies predicts overall survival in advanced-stage classical Hodgkin lymphoma. J Clin Oncol 31:692-700
Savinov, Alexei Y; Strongin, Alex Y (2013) Targeting the T-cell membrane type-1 matrix metalloproteinase-CD44 axis in a transferred type 1 diabetes model in NOD mice. Exp Ther Med 5:438-442
Remacle, Albert G; Golubkov, Vladislav S; Shiryaev, Sergey A et al. (2012) Novel MT1-MMP small-molecule inhibitors based on insights into hemopexin domain function in tumor growth. Cancer Res 72:2339-49
Tan, King L; Scott, David W; Hong, Fangxin et al. (2012) Tumor-associated macrophages predict inferior outcomes in classic Hodgkin lymphoma: a correlative study from the E2496 Intergroup trial. Blood 120:3280-7
Golubkov, Vladislav S; Strongin, Alex Y (2012) Insights into ectodomain shedding and processing of protein-tyrosine pseudokinase 7 (PTK7). J Biol Chem 287:42009-18

Showing the most recent 10 out of 80 publications