The Bcl-2 protein family regulates cell death induction by a wide range of apoptotic signals and thereby plays an important role in the pathogenesis of cancer. Although the antiapoptotic proteins Bcl-2 and Bcl-xL are localized to both mitochondria and the endoplasmic reticulum (ER) recent studies have focused almost exclusively on their role in mitochondria. Therefore, the purpose of this proposal is to investigate how Bcl-2/Bxl-xL function in the ER. Based on the central role the ER plays in intracellular calcium homeostasis and signaling, this proposal will test the overall hypothesis that Bcl-2/Bcl-xL work either as ion channels or regulators of ion channels to preserve calcium homeostasis within the ER lumen, thereby preventing organelle dysfunction that triggers apoptosis.
Aim 1 will investigate the hypothesis that the transmembrane alpha 5, 6 helices of Bcl-2/Bcl-xL function as a calcium sensor that regulates the ion conductivity of Bcl-2/Bcl-xL in response to changes in calcium concentration within the ER lumen, thereby forming a feedback loop that maintains calcium homeostasis in the ER.
Aim 2 will investigate the hypothesis that the BH4 domain of the Bcl-2/Bcl-xL regulates the ion conductivity of Bcl-2/Bcl-xL in response to changes in intraluminal calcium concentration.
Aims 1 & 2 will employ planar lipid bilayer techniques to measure ion channel activity in ER-targeted fluorescent proteins, cameleons, to monitor effects of Bcl-2/Bcl-xL on intraluminal calcium concentration on a single cell basis.
Aim 3 will investigate the hypothesis that Bcl-2/Bcl-xL regulate calcium efflux through the inositol 1.4.5-triphosphate receptor, a calcium channel located in the ER membrane.
Aim 4 will test the hypothesis that apoptotic signals disrupt calcium-dependent ER function, as measured by the calcium-dependent processing of the lysosomal aspartic protease cathepsin D, and that Bcl-2/Bcl-xL preserve calcium-dependent protein processing in the ER, thereby inhibiting organelle dysfunction and preserving cell viability. The latter studies will employ both pulse-chase labeling techniques and microscopic imaging of green fluorescent protein-cathepsin D fusion proteins to determine effects of apoptotic signals and Bcl-2/Bcl-xL on protein processing within the ER. Collectively, the aims of this proposal investigate novel concepts regarding the mechanism of Bcl-2/Bcl-xL function at the level of the ER.
Showing the most recent 10 out of 23 publications