Stats are transcription factors that integrate cytokine and growth factor receptor signaling and are required for normal cell growth, survival, differentiation, and motility. Stat activation is commonly seen in cancer and in particular activated Stat3 is found in ~50% of breast cancer-derived cell lines and in primary breast adenocarcinomas and likely correlates with poor prognosis. The evidence that activated Stat3 contributes mechanistically to breast tumorigenesis is based on cell line studies that have shown that enforced expression of a constitutively activated form of Stat3 (Stat3C) promotes invasiveness and tumorigenicity. Conversely, inhibition of Stat3 activity/expression in cell lines expressing high levels of Stat3 reduces invasiveness, tumorigenicity and angiogenesis. Our studies reveal a prominent role for IL-6 in driving Stat3 activation in breast cancer cell lines through the gp130/Jak pathway providing evidence for an IL-6/Stat3 autocrine/paracrine positive feedback loop in tumorigenesis. However, these cell line based assays cannot adequately address many critical aspects of de novo tumorigenesis including initiation, progression, and metastatic spread which involve tumor:host interactions best evaluated in animal model systems. We have developed the first in vivo model systems in which activated Stat3 can be conditionally regulated in the mammary gland. Preliminary data demonstrates enforced expression of Stat3C in the virgin gland mediates production of pro-inflammatory cytokines and recruitment of leukocytes. We hypothesize that in breast cancer, sustained activation of epithelial cell Stat3, will trigger chronic inflammatory changes, i.e., """"""""wounds that never heal"""""""" and thereby promote de novo tumorogenesis(Aim1). In cooperation with established murine mammary tumor models, preliminary data suggests that inducible expression of Stat3C potentiates hyperplasia, increases tumor multiplicity and enhances metastatic disease. We will determine the cooperative effects of Stat3C on tumor latency, histologic progression, leukocyte involvement and metastatic progression.
(Aim 2). In addition, we have conditionally deleted Stat3 from the mammary gland in order to examine the functional requirement of Stat3 activation on MMTV-oncogene mediated tumorigenesis as well as human breast cancer derived cell lines. Our preliminary data suggest a requirement for Stat3 in mediating both the growth and metastatic potential of these tumors. These findings complement those in Aims1&2 and combined will allow us to elucidate the Stat3 regulated contributions to the promotion of murine and human mammary cell tumorigenesis (Aim3). IL-6 is a principal mediator of Stat3 activation in primary breast tumors as well as breast cancer derived cell lines. We hypothesize that Stat3 becomes activated by IL-6 and that Stat3 in conjunction with NF-kB potentiates IL-6 production establishing a positive feed-back loop in cancer. We will identify the precise contribution of NF-kB and Stat3 to IL-6 regulation in breast cancer derived cell lines. We will quantify the levels of and distribution of pStat3, IL-6 and NF-kB and leukocyte infiltration in archived breast cancer samples with matched lymph nodes and distant metastasis. We hypothesize that the IL-6/Stat3/NF-kB trio will be predictive of metastatic progression (Aim 4). Using these model systems, which can alternatively turn Stat3 activation on and off, we are now poised to fully investigate the biological role of Stat3 in breast tumorigenesis in vivo. The results of this work will demonstrate the functional consequences of this activated transcription factor to de novo tumorigenesis, tumor progression and metastatic disease and establish the rationale for targeted therapies aimed at the Jak/Stat3 pathway in breast cancer. ?

Public Health Relevance

Breast cancer is the most common malignancy diagnosed among women worldwide. Despite significant improvements in the diagnosis and treatment of this disease, tumor dormancy followed by distant recurrences accounts for 90% of all cancer deaths. This suggests that malignant cells have already disseminated at the time of diagnosis. Micrometastasis in the blood and bone marrow are the principal targets for adjuvant chemotherapy and hormonal therapy. However, these metastatic cells frequently evade therapeutic interventions and eventually recur. Clearly understanding the molecular mechanisms underlying the development of metastatic disease is required in order to treat this fatal disorder effectively. The development of animal models which recapitulate human breast tumorigenesis is instrumental to our understanding of this complex disease. Such models are essential for the rational development and testing of targeted therapeutics. We have determined that a normal cellular protein, Stat3, is persistently activated or """"""""turned-on"""""""" in many cancers including >30% of breast cancers. Stat3 is activated in breast cancers by a group of proteins known as inflammatory cytokines which are important mediators of wound healing but can also potentiate the metastatic spread of cancer cells. Inactivating or """"""""removing"""""""" activated Stat3 from selected breast cancer cells can alter their ability to migrate and recruit the necessary blood supply for growth and spread. By genetically changing a normal Stat3 into one that is constitutively active, one can make a normal breast cell behave as a cancerous one. We have developed an animal model in which we can """"""""turn-on"""""""" or """"""""turn-off"""""""" activated Stat3 in the breast gland. Our preliminary data suggests that """"""""turning-on"""""""" activated Stat3 may accelerate the development of metastatic disease, while """"""""turning Stat3 off"""""""" inhibits tumor growth and metastatic spread. The results of the proposed work will demonstrate the functional consequences of activated Stat3 to breast tumor formation, progression and metastatic disease and establish the rationale for targeted therapies aimed at the Stat3 pathway in breast cancer. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
2R01CA087637-06A2
Application #
7527645
Study Section
Tumor Cell Biology Study Section (TCB)
Program Officer
Yassin, Rihab R,
Project Start
2000-07-01
Project End
2011-05-31
Budget Start
2008-07-18
Budget End
2009-05-31
Support Year
6
Fiscal Year
2008
Total Cost
$324,435
Indirect Cost
Name
Sloan-Kettering Institute for Cancer Research
Department
Type
DUNS #
064931884
City
New York
State
NY
Country
United States
Zip Code
10065
Sansone, Pasquale; Berishaj, Marjan; Rajasekhar, Vinagolu K et al. (2017) Evolution of Cancer Stem-like Cells in Endocrine-Resistant Metastatic Breast Cancers Is Mediated by Stromal Microvesicles. Cancer Res 77:1927-1941
Sansone, Pasquale; Ceccarelli, Claudio; Berishaj, Marjan et al. (2016) Self-renewal of CD133(hi) cells by IL6/Notch3 signalling regulates endocrine resistance in metastatic breast cancer. Nat Commun 7:10442
Gao, Sizhi P; Chang, Qing; Mao, Ninghui et al. (2016) JAK2 inhibition sensitizes resistant EGFR-mutant lung adenocarcinoma to tyrosine kinase inhibitors. Sci Signal 9:ra33
Chang, Qing; Daly, Laura; Bromberg, Jacqueline (2014) The IL-6 feed-forward loop: a driver of tumorigenesis. Semin Immunol 26:48-53
Shike, Moshe; Doane, Ashley S; Russo, Lianne et al. (2014) The effects of soy supplementation on gene expression in breast cancer: a randomized placebo-controlled study. J Natl Cancer Inst 106:
Gholami, S; Chen, C-H; Gao, S et al. (2014) Role of MAPK in oncolytic herpes viral therapy in triple-negative breast cancer. Cancer Gene Ther 21:283-9
Chang, Qing; Bournazou, Eirini; Sansone, Pasquale et al. (2013) The IL-6/JAK/Stat3 feed-forward loop drives tumorigenesis and metastasis. Neoplasia 15:848-62
Couto, Joana Pinto; Daly, Laura; Almeida, Ana et al. (2012) STAT3 negatively regulates thyroid tumorigenesis. Proc Natl Acad Sci U S A 109:E2361-70
Sansone, Pasquale; Bromberg, Jacqueline (2012) Targeting the interleukin-6/Jak/stat pathway in human malignancies. J Clin Oncol 30:1005-14
Couto, Joana P; Almeida, Ana; Daly, Laura et al. (2012) AZD1480 blocks growth and tumorigenesis of RET- activated thyroid cancer cell lines. PLoS One 7:e46869

Showing the most recent 10 out of 21 publications