The skin has served as an extremely useful model for studying factors regulating normal epithelial growth and development and the perturbation of these processes that occurs during neoplasia. Although much previous work has centered on squamous cell carcinoma, there has been increased interest in basal cell carcinoma (BCC) following the discovery that deregulated Sonic hedgehog (Shh) signaling is linked to the development of these tumors. Shh pathway activation may be the result of loss-of- function mutations (involving the Shh receptor PTCH1), or gain- of-function mutations (involving SMO, which is normally repressed by PTCH1). While uncontrolled Shh pathway activation is associated with tumor development, we and others have shown that targeted disruption of Shh results in severe impairment of hair follicle morphogenesis. Although it is clear that Shh signaling has important functions in normal skin and BCC, the pivotal nuclear target(s) mediating keratinocyte responses to this pathway have yet to be identified. Much of what is known about this pathway is based on genetic analysis in Drosophila, where the transcription factor Cubitus interruptus (Ci) mediates responses to the Shh homolog Hedgehog. We will explore the notion that one or more of the vertebrate Ci homologs (Gli1, Gli2, Gli3) plays a central role in Shh signaling in keratinocytes. We propose a series of comprehensive studies focusing on the biological, biochemical, and molecular consequences of Gli protein overexpression in keratinocytes. Although there is substantial evidence implicating deregulated Shh signaling in BCC, there is little insight into how activation of this pathway leads to tumor formation. The results of the proposed studies will provide new information to fill in this gap in our knowledge. In addition to BCCs, several other neoplasms have been linked to the Shh pathway, including medulloblastomas and rhabdomyosarcomas. Moreover, precisely-controlled Shh signaling is essential for embryonic patterning in multiple tissues, with deregulation of this pathway leading to a variety of developmental abnormalities. Thus, the knowledge gained during the course of the proposed studies is likely to have relevance to a variety of clinical disorders, and may ultimately lead to improved treatments for BCC and other tumors.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA087837-02
Application #
6378097
Study Section
Oral Biology and Medicine Subcommittee 1 (OBM)
Program Officer
Mietz, Judy
Project Start
2000-07-01
Project End
2004-06-30
Budget Start
2001-07-01
Budget End
2002-06-30
Support Year
2
Fiscal Year
2001
Total Cost
$286,727
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Dermatology
Type
Schools of Medicine
DUNS #
791277940
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Eberl, Markus; Mangelberger, Doris; Swanson, Jacob B et al. (2018) Tumor Architecture and Notch Signaling Modulate Drug Response in Basal Cell Carcinoma. Cancer Cell 33:229-243.e4
Xu, Tao; Zhang, Honglai; Park, Sung-Soo et al. (2017) Loss of Pin1 Suppresses Hedgehog-Driven Medulloblastoma Tumorigenesis. Neoplasia 19:216-225
Syu, Li-Jyun; Zhao, Xinyi; Zhang, Yaqing et al. (2016) Invasive mouse gastric adenocarcinomas arising from Lgr5+ stem cells are dependent on crosstalk between the Hedgehog/GLI2 and mTOR pathways. Oncotarget 7:10255-70
Di Girolamo, Daniela; Ambrosio, Raffaele; De Stefano, Maria A et al. (2016) Reciprocal interplay between thyroid hormone and microRNA-21 regulates hedgehog pathway-driven skin tumorigenesis. J Clin Invest 126:2308-20
Sharpe, Hayley J; Pau, Gregoire; Dijkgraaf, Gerrit J et al. (2015) Genomic analysis of smoothened inhibitor resistance in basal cell carcinoma. Cancer Cell 27:327-41
Peterson, Shelby C; Eberl, Markus; Vagnozzi, Alicia N et al. (2015) Basal cell carcinoma preferentially arises from stem cells within hair follicle and mechanosensory niches. Cell Stem Cell 16:400-12
Kern, D; Regl, G; Hofbauer, S W et al. (2015) Hedgehog/GLI and PI3K signaling in the initiation and maintenance of chronic lymphocytic leukemia. Oncogene 34:5341-51
Verhaegen, Monique E; Mangelberger, Doris; Harms, Paul W et al. (2015) Merkel cell polyomavirus small T antigen is oncogenic in transgenic mice. J Invest Dermatol 135:1415-1424
Luongo, Cristina; Ambrosio, Raffaele; Salzano, Salvatore et al. (2014) The sonic hedgehog-induced type 3 deiodinase facilitates tumorigenesis of basal cell carcinoma by reducing Gli2 inactivation. Endocrinology 155:2077-88
Wong, Sunny Y; Dlugosz, Andrzej A (2014) Basal cell carcinoma, Hedgehog signaling, and targeted therapeutics: the long and winding road. J Invest Dermatol 134:E18-22

Showing the most recent 10 out of 43 publications