Cost-effective cancer prevention and control strategies that emphasize population subgroups at highest risk are increasingly needed to counter national and global health costs. The proposed research will address this need by helping identify high-risk individuals in three specific aims.
The first aim i s to develop more informative measures of model performance that can focus on specific population subgroups. In particular, we will develop and evaluate better measures of model accuracy (calibration), and model discrimination between those likely and unlikely to develop the adverse outcome.
The second aim i s to develop new ways to expand the utility of epidemiologic data for assessing model performance. These methods will allow investigators to accommodate cohort selection bias in assessing model performance;use and interpret case-control data for assessing model discrimination;and assess risks of multiple competing adverse outcomes in the same individual.
The third aim i s to augment the freely available R-based software RMAP (Risk Model Assessment Program) www.stanford.edu/~ggong/rmap/index.html to include the new and more informative performance measures and allow investigators to apply them to a broad range of epidemiologic data.
Personal risk models offer the hope of identifying individuals at highest risk of adverse health outcomes, who could be targeted for cost-effective prevention strategies. Our goals are to develop new ways to evaluate the performance of such models and to illustrate the methods by applying them to site-specific cancer data. We plan to make the methods available to the research community through freely available software.
Showing the most recent 10 out of 39 publications