I lead the Children?s Oncology Group Phase III clinical trial, ACNS0332, which evaluates treatment options for children with high-risk medulloblastoma (the most common pediatric brain tumor) and supratentorial primitive neuroectodermal tumors (sPNETs). The study opened in 2007 and underwent a major amendment in 2014, when emerging data revealed biological disparity between medulloblastomas and sPNETs as well as heterogeneity in sPNET patients. We discontinued sPNET patient enrollment, and genomic analyses funded by the prior cycle of this grant, revealed that 71% of the non-pineal sPNET patients were actually high grade glioma, ependymoma or atypical teratoid rhabdoid tumors, despite sPNET appearance by histopathology. This reveals the limitations of traditional histopathology and shows that contemporary genomic analyses could spare many children from receiving craniospinal irradiation that is not necessary and not helpful.
In Aim 1 of this renewal application, we extend the genomic studies to the 300 medulloblastoma patients in the study. We collected research tissue from over 95% of these patients and anticipate that the studies will reveal 1) patient groups who are likely to die from their disease despite the intense therapy on ACNS0332, 2) patient groups that were placed on ACNS0332 because of clinical or histopathologic observations that may include a mixture of good prognosis patients (e.g., those who would fare well with much less radiation than provided on ACNS0332) as well as those with genomically-predicted poor prognosis, who should be stratified differently in the future.
In Aim 2 we address the radiation resistance phenotype of the worst prognosis patients, particularly those with amplified MYC or MYCN. We will collect pre- and post-radiation specimens from patient-derived orthotopic xenograft (PDOX) models (14 MYC/MYCN amplified) that we generated and characterized in the prior cycle of this grant; other PDOX models that we receive from four collaborators; and matching cell lines that we generated and characterized. We will use the cell lines for to screen FDA approved drugs for those that overcome radiation resistance and to conduct functional genomic screens to identify pathways that, when inhibited, convert radiation resistant cells into radiation sensitive cells. In vivo efficacy studies on PDOX mouse models representing dozens of patients will follow. The significance is that this work will likely reduce unnecessary radiation exposure to patients who do not warrant high-dose craniospinal irradiation, identify patients who would best be served by alternative therapies, and generate pre-clinical data to prioritize the most effective agents for upcoming human clinical trials.

Public Health Relevance

I lead Children?s Oncology Group Study ACNS0332, the largest study ever conducted on children with high- risk medulloblastoma and supratentorial tumors. The proposed work will enable us to conduct genome-wide methylation, gene expression, and sequencing studies to identify prognostic indicators of children who are unlikely to survive even with the intensive therapy of this study ? and who should be offered alternative approaches. The study further uses over 50 patient-derived mouse models to prioritize drug candidates that overcome radiation resistance in the highest risk groups of pediatric brain tumor patients.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
2R01CA114567-11A1
Application #
9662041
Study Section
Cancer Biomarkers Study Section (CBSS)
Program Officer
Forry, Suzanne L
Project Start
2005-12-06
Project End
2023-12-31
Budget Start
2019-01-01
Budget End
2019-12-31
Support Year
11
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Fred Hutchinson Cancer Research Center
Department
Type
DUNS #
078200995
City
Seattle
State
WA
Country
United States
Zip Code
98109
Crook, Zachary R; Sevilla, Gregory P; Friend, Della et al. (2018) Publisher Correction: Mammalian display screening of diverse cystine-dense peptides for difficult to drug targets. Nat Commun 9:1072
Morris, Shelli M; Mhyre, Andrew J; Carmack, Savanna S et al. (2018) A modified gene trap approach for improved high-throughput cancer drug discovery. Oncogene 37:4226-4238
Cook Sangar, Michelle L; Genovesi, Laura A; Nakamoto, Madison W et al. (2017) Inhibition of CDK4/6 by Palbociclib Significantly Extends Survival in Medulloblastoma Patient-Derived Xenograft Mouse Models. Clin Cancer Res 23:5802-5813
Crook, Zachary R; Sevilla, Gregory P; Friend, Della et al. (2017) Mammalian display screening of diverse cystine-dense peptides for difficult to drug targets. Nat Commun 8:2244
Ding, Yu; Herman, Jacob A; Toledo, Chad M et al. (2017) ZNF131 suppresses centrosome fragmentation in glioblastoma stem-like cells through regulation of HAUS5. Oncotarget 8:48545-48562
Pei, Yanxin; Liu, Kun-Wei; Wang, Jun et al. (2016) HDAC and PI3K Antagonists Cooperate to Inhibit Growth of MYC-Driven Medulloblastoma. Cancer Cell 29:311-323
Rosenthal, Eben L; Warram, Jason M; de Boer, Esther et al. (2016) Successful Translation of Fluorescence Navigation During Oncologic Surgery: A Consensus Report. J Nucl Med 57:144-50
Moreno-Gonzalez, Alicia; Olson, James M; Klinghoffer, Richard A (2016) Predicting responses to chemotherapy in the context that matters - the patient. Mol Cell Oncol 3:e1057315
Baik, Fred M; Hansen, Stacey; Knoblaugh, Sue E et al. (2016) Fluorescence Identification of Head and Neck Squamous Cell Carcinoma and High-Risk Oral Dysplasia With BLZ-100, a Chlorotoxin-Indocyanine Green Conjugate. JAMA Otolaryngol Head Neck Surg 142:330-8
Lindsey, J C; Kawauchi, D; Schwalbe, E C et al. (2015) Cross-species epigenetics identifies a critical role for VAV1 in SHH subgroup medulloblastoma maintenance. Oncogene 34:4746-57

Showing the most recent 10 out of 35 publications