Soft tissue sarcomas arise in nearly 10,000 persons in the United States each year, and about 40% of patients die of either loco-regional disease or distant metastasis. As sarcomas and other solid tumors outgrow their blood supply, hypoxia (or oxygen deprivation) stabilizes hypoxia inducible factors 1a and 2a (HIFs), which bind to ARNT (a.k.a. HIF-?) and drive the expression of over 150 genes. These genes regulate) a variety of tumor phenotypes including tumor angiogenesis (or new blood vessel formation), invasion, and metastasis. Vascular endothelial growth factor (VEGF) is one of the genes controlled by HIFs and is also one of the most important factors driving tumor angiogenesis. HIFs and VEGF are overexpressed in human sarcomas, and increasing levels of these factors correlate with extent of disease and metastasis. HIFs and VEGF may also contribute to tumor resistance to radiation therapy. Numerous preclinical studies have found that anti-VEGF therapies can augment the effects of radiation therapy, and this synergistic effect was confirmed in a phase II clinical trial of neoadjuvant bevacizumab (an anti-VEGF antibody) and radiation therapy for sarcomas. The long-term objective of this proposal is to expand the use of agents targeting VEGF and HIFs in patients with sarcoma to reduce loco-regional recurrence and distant metastasis. Consequently, this proposal is designed to test the hypothesis that HIFs and VEGF play critical and interdependent roles in regulating sarcoma progression, metastasis, and radiation sensitivity. To test this hypothesis, this research proposal will (1) determine the role of HIFs in sarcomagenesis and metastasis, (2) determine the effects of VEGF inhibition on HIF activity, tumor invasion, and metastasis, and (3) determine the effects of HIF and VEGF inhibition on response of sarcomas to radiation. The methods of this proposal include analysis of sarcoma cell lines and primary endothelial cells in vitro, analysis of genetically engineered mouse models, and analysis of tumor tissue samples from sarcoma patients.

Public Health Relevance

Oxygen is essential for tumor growth, and tumors must correct oxygen deprivation in order to expand and metastasize. In sarcomas, hypoxia (or low oxygen) stabilizes hypoxia inducible factors 1a and 2a (HIFs) which in turn upregulate (1) vascular endothelial growth factor (VEGF) which induces the formation of new tumor blood vessels and (2) other HIF-target genes which mediate tumor invasion and metastasis. This project will examine the critical and interdependent roles of HIFs and VEGF in sarcoma formation, progression, metastasis, and radiation sensitivity, and identify therapeutic means of targeting these pathways in patients with sarcoma.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
1R01CA158301-01
Application #
8086285
Study Section
Developmental Therapeutics Study Section (DT)
Program Officer
Bernhard, Eric J
Project Start
2011-09-13
Project End
2016-07-31
Budget Start
2011-09-13
Budget End
2012-07-31
Support Year
1
Fiscal Year
2011
Total Cost
$332,000
Indirect Cost
Name
University of Pennsylvania
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Huangyang, Peiwei; Simon, M Celeste (2018) Hidden features: exploring the non-canonical functions of metabolic enzymes. Dis Model Mech 11:
Chang, Kevin K; Yoon, Changhwan; Yi, Brendan C et al. (2018) Platelet-derived growth factor receptor-? and -? promote cancer stem cell phenotypes in sarcomas. Oncogenesis 7:47
Xie, Hong; Simon, M Celeste (2017) Oxygen availability and metabolic reprogramming in cancer. J Biol Chem 292:16825-16832
Yoon, Changhwan; Chang, Kevin K; Lee, Jun Ho et al. (2016) Multimodal targeting of tumor vasculature and cancer stem-like cells in sarcomas with VEGF-A inhibition, HIF-1? inhibition, and hypoxia-activated chemotherapy. Oncotarget 7:42844-42858
Nakazawa, Michael S; Keith, Brian; Simon, M Celeste (2016) Oxygen availability and metabolic adaptations. Nat Rev Cancer 16:663-73
Lewis, Daniel M; Park, Kyung Min; Tang, Vitor et al. (2016) Intratumoral oxygen gradients mediate sarcoma cell invasion. Proc Natl Acad Sci U S A 113:9292-7
Simon, M Celeste (2016) The Hypoxia Response Pathways - Hats Off! N Engl J Med 375:1687-1689
Hayano, Koichi; Tian, Fang; Kambadakone, Avinash R et al. (2015) Texture Analysis of Non-Contrast-Enhanced Computed Tomography for Assessing Angiogenesis and Survival of Soft Tissue Sarcoma. J Comput Assist Tomogr 39:607-12
Yoon, C; Lee, H-J; Park, D J et al. (2015) Hypoxia-activated chemotherapeutic TH-302 enhances the effects of VEGF-A inhibition and radiation on sarcomas. Br J Cancer 113:46-56
Lee, Hae-June; Yoon, Changhwan; Park, Do Joong et al. (2015) Inhibition of vascular endothelial growth factor A and hypoxia-inducible factor 1? maximizes the effects of radiation in sarcoma mouse models through destruction of tumor vasculature. Int J Radiat Oncol Biol Phys 91:621-30

Showing the most recent 10 out of 19 publications