Drug dependence is linked to decreased volume of limbic-related structures, altered hippocampal morphology, and limbic- and hippocampal-related symptoms, such as deficits in learning and memory. Conversely, the hippocampus is involved in drug reward and relapse to drug seeking. Clarification of the time course, extent, and cause of drug-induced hippocampal neuroadaptations and identification of how hippocampal neuroadaptations impact addictive behaviors will greatly improve our understanding and treatment of addiction. A notable aspect of the hippocampus is its ability to generate new neurons throughout life. Adult-generated neurons are functionally integrated into hippocampal circuitry, and appear to be involved in hippocampal- dependent learning. Drugs of abuse, including morphine, decrease neurogenesis in the subgranular zone (SGZ) of the hippocampal dentate gyrus. This raises the possibility that opiate-induced alteration in neurogenesis leads to cognitive deficits, continued drug taking or relapse, or otherwise impedes recovery. We will test this possibility using state-of-the-art techniques to overcome obstacles in SGZ precursor analysis and thus advance our understanding of the relationship between opiate and hippocampal neurogenesis.
Aim 1. Determine how morphine self-administration and withdrawal alter discrete stages of adult hippocampal neurogenesis. Chronic, but not acute, opiates decrease the birth of new cells and generation of neurons in adult hippocampus. Using morphine self-administration, here we will take the next essential step in understanding this action: delineate the precise effects of opiates and withdrawal on all cellular stages, from proliferation of stem and precursor cells, to maturation of young neurons, and eventual survival to maturity.
Aim 2. Assess how altered adult hippocampal neurogenesis relates to drug seeking. Guided by Aim 1 and our preliminary data on the importance of new neurons to drug seeking after withdrawal, we will explore how voluntary running and hippocampal-dependent learning are altered by opiate exposure, and how running and learning influence drug-seeking and opiate-induced alterations in hippocampal neurogenesis.
Aim 3. Evaluate the involvement of adult-generated hippocampal neurons in drug/context association. It is unknown if adult-generated neurons are influenced by or important in the drug/context association critical for reinstatement to self-administration or conditioned place preference (CPP). Using our novel transgenic mouse models to inducibly and selectively reduce hippocampal neurogenesis, we will examine the hypothesis that adult-generated neurons are activated by drug/context associations during a critical maturation window. These studies may indicate therapeutic approaches for treating opiate addiction or preventing opiate relapse. These studies will also improve our understanding of the complex mechanisms by which opiates affect brain function hippocampal function, and will provide insight into the role of the hippocampus and adult neurogenesis in addictive processes, a critical issue for addiction research in particular and biomedical science in general. Drug addiction is a devastating disorder marked by compulsive drug use, high propensity to relapse to drug taking, and cognitive deficits. Drugs of abuse, including heroin, lead to a decrease in the number of new neurons in the hippocampus, a brain region important for learning and memory. We will explore the potentially reciprocal relationship between opiate addiction and adult hippocampal neurogenesis, thus providing much- needed insight into the structure and function of the addicted brain as well as the function of new neurons in the adult brain.

Public Health Relevance

Drug addiction is a devastating disorder marked by compulsive drug use, high propensity to relapse to drug taking, and cognitive deficits. Drugs of abuse, including heroin, lead to a decrease in the number of new neurons in the hippocampus, a brain region important for learning and memory. We will explore the potentially reciprocal relationship between opiate addiction and adult hippocampal neurogenesis, thus providing much- needed insight into the structure and function of the addicted brain as well as the function of new neurons in the adult brain.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Research Project (R01)
Project #
5R01DA016765-09
Application #
8217301
Study Section
Neurobiology of Motivated Behavior Study Section (NMB)
Program Officer
Pilotte, Nancy S
Project Start
2003-07-01
Project End
2014-01-31
Budget Start
2012-02-01
Budget End
2013-01-31
Support Year
9
Fiscal Year
2012
Total Cost
$379,254
Indirect Cost
$137,966
Name
University of Texas Sw Medical Center Dallas
Department
Psychiatry
Type
Schools of Medicine
DUNS #
800771545
City
Dallas
State
TX
Country
United States
Zip Code
75390
Bulin, Sarah E; Mendoza, Matthew L; Richardson, Devon R et al. (2018) Dentate gyrus neurogenesis ablation via cranial irradiation enhances morphine self-administration and locomotor sensitization. Addict Biol 23:665-675
Whoolery, Cody W; Walker, Angela K; Richardson, Devon R et al. (2017) Whole-Body Exposure to 28Si-Radiation Dose-Dependently Disrupts Dentate Gyrus Neurogenesis and Proliferation in the Short Term and New Neuron Survival and Contextual Fear Conditioning in the Long Term. Radiat Res 188:532-551
Yun, Sanghee; Donovan, Michael H; Ross, Michele N et al. (2016) Stress-Induced Anxiety- and Depressive-Like Phenotype Associated with Transient Reduction in Neurogenesis in Adult Nestin-CreERT2/Diphtheria Toxin Fragment A Transgenic Mice. PLoS One 11:e0147256
Petrik, David; Latchney, Sarah E; Masiulis, Irene et al. (2015) Chromatin Remodeling Factor Brg1 Supports the Early Maintenance and Late Responsiveness of Nestin-Lineage Adult Neural Stem and Progenitor Cells. Stem Cells 33:3655-65
Cho, Kyung-Ok; Lybrand, Zane R; Ito, Naoki et al. (2015) Aberrant hippocampal neurogenesis contributes to epilepsy and associated cognitive decline. Nat Commun 6:6606
Latchney, Sarah E; Jaramillo, Thomas C; Rivera, Phillip D et al. (2015) Chronic P7C3 treatment restores hippocampal neurogenesis in the Ts65Dn mouse model of Down Syndrome [Corrected]. Neurosci Lett 591:86-92
Latchney, Sarah E; Jiang, Yindi; Petrik, David P et al. (2015) Inducible knockout of Mef2a, -c, and -d from nestin-expressing stem/progenitor cells and their progeny unexpectedly uncouples neurogenesis and dendritogenesis in vivo. FASEB J 29:5059-71
Rivera, Phillip D; Raghavan, Ramya K; Yun, Sanghee et al. (2015) Retrieval of morphine-associated context induces cFos in dentate gyrus neurons. Hippocampus 25:409-14
Walker, A K; Rivera, P D; Wang, Q et al. (2015) The P7C3 class of neuroprotective compounds exerts antidepressant efficacy in mice by increasing hippocampal neurogenesis. Mol Psychiatry 20:500-8
DeCarolis, Nathan A; Rivera, Phillip D; Ahn, Francisca et al. (2014) 56 Fe Particle Exposure Results in a Long-Lasting Increase in a Cellular Index of Genomic Instability and Transiently Suppresses Adult Hippocampal Neurogenesisin Vivo. Life Sci Space Res (Amst) 2:70-79

Showing the most recent 10 out of 40 publications