We possess a remarkable ability to 'hear out' (segregate) the individual sound sources that makeup the complex, acoustic environments we encounter in everyday listening. Understanding this ability has been a preoccupation of psychoacoustic research, but it is a tremendous challenge. Perturbation analysis is a methodological approach that has advanced understanding of related problems in vision [Murray, R.F. 2011. J. of Vision 11, 1-25]. Here the approach is adapted to audition. The application proceeds in three stages: First, simple speech and environmental sounds are synthesized according to a generative model of the sound-producing source. Second, listener decision strategy in segregating a target from non-target (noise) source is determined from decision weights (regression coefficients) relating listener judgments regarding the target to lawful perturbations in acoustic parameters, as dictated by the generative model. Third, factors limiting segregation are identified by comparing the obtained weights and residuals to those of a maximum- likelihood (ML) observer that optimizes segregation based on the equations of motion of the generating source. The approach represents a significant advance over traditional methods that infer listener decision strategy from performance accuracy or from the effect of placing acoustic cues in unlawful opposition.
Specific aims are to apply this method to (1) test between two major classes of segregation models, target enhancement vs. noise cancellation, (2) test predictions of acoustics-based versus mechanics-based hypotheses regarding source segregation, common fate vs. common source, (3) quantify the relative influence of target-noise uncertainty and similarity, (4) determine the influence of level dominance on sound source segregation, and (5) account for diverse patterns of behavior across tasks by using the decision weights to identify individual listening styles. It is expected that the knowledge gained from these studies will inform research on broader aspects of the problem of sound source segregation, including those relevant to the evaluation and treatment of disordered hearing as it impacts everyday listening in noisy environments.

Public Health Relevance

By advancing our understanding of the normal processes underlying sound source segregation the results may prove key in the development of technologies and rehabilitative strategies that deal more effectively with the impact of dysfunctional hearing on everyday listening.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
5R01DC001262-24
Application #
9206492
Study Section
Cognition and Perception Study Section (CP)
Program Officer
Donahue, Amy
Project Start
1991-07-01
Project End
2018-01-31
Budget Start
2017-02-01
Budget End
2018-01-31
Support Year
24
Fiscal Year
2017
Total Cost
$281,650
Indirect Cost
$90,400
Name
University of Wisconsin Madison
Department
Psychology
Type
Schools of Arts and Sciences
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Gilbertson, Lynn R; Lutfi, Robert A; Ellis Weismer, Susan (2017) Auditory preference of children with autism spectrum disorders. Cogn Process 18:205-209
Chang, An-Chieh; Lutfi, Robert; Lee, Jungmee et al. (2016) A Detection-Theoretic Analysis of Auditory Streaming and Its Relation to Auditory Masking. Trends Hear 20:
Lee, Jungmee; Heo, Inseok; Chang, An-Chieh et al. (2016) Individual Differences in Behavioural Decision Weights Related to Irregularities in Cochlear Mechanics. Adv Exp Med Biol 894:457-465
Chang, An-Chieh; Lutfi, Robert A; Lee, Jungmee (2015) Auditory streaming of tones of uncertain frequency, level, and duration. J Acoust Soc Am 138:EL504-8
Gilbertson, Lynn; Lutfi, Robert A; Lee, Jungmee (2015) Estimates of decision weights and internal noise in the masked discrimination of vowels by young and elderly adults. J Acoust Soc Am 137:EL403-7
Gilbertson, Lynn; Lutfi, Robert A (2014) Correlations of decision weights and cognitive function for the masked discrimination of vowels by young and old adults. Hear Res 317:9-14
Chang, An-Chieh; Lutfi, Robert (2013) Effect of frequency variation and covariation on auditory streaming of tone sequences. J Acoust Soc Am 134:4231
Lutfi, Robert A; Gilbertson, Lynn; Heo, Inseok et al. (2013) The information-divergence hypothesis of informational masking. J Acoust Soc Am 134:2160-70
Lutfi, Robert A; Liu, Ching-Ju; Stoelinga, Christophe N J (2013) A new approach to sound source segregation. Adv Exp Med Biol 787:203-11
Lutfi, Robert (2013) Auditory informational masking and the Ear Club connection. J Acoust Soc Am 134:4163

Showing the most recent 10 out of 35 publications