This research examines brain mechanisms for processing of temporal information relevant to speech. Comparison of responses to acoustical and electrical (cochlear-implant) stimulation will help to isolate """"""""ear"""""""" from """"""""brain"""""""" components of temporal processing and will provide a basic-science foundation for design of speech processors for clinical cochlear prostheses. Acute and chronic auditory-cortex experiments in guinea pigs will employ acoustical and electrical stimulation. Psychophysical experiments in guinea pigs and in human cochlear-implant users will test predictions from the cortical studies.
Specific Aim 1 will characterize the cortical transformation of codes for amplitude modulation. Neurons in cortical input layers phase lock to to modulated electrical pulse trains at frequencies to >60 Hz. Temporal information that is fed forward to other cortical layers must be re-coded in a form that does not require tonic phase locking. We will test the hypothesis that high-frequency modulation information is transformed from a tonic phase-locking code to a rate code or phasic temporal code within the cortical columns of area A1.
This aim also tests 2 clinically relevant hypotheses: (1) Sensitivity to modulation of electrical pulse trains is optimized by monopolar electrode configurations and by carrier pulse rates low enough to permit entrainment in the auditory nerve or lower brainstem;and (2) Inter-channel interference is minimized by a pulse rates that permit inter-channel temporal separation of at least 500 jis.
Specific Aim 2 will distinguish peripheral and central mechanisms of temporal acuity and will identify factors that influence forward masking. We will test the hypothesis that forward masking reflects mechanisms within the central auditory system that are substantially distinct from the mechanisms of amplitude-modulation sensitivity. Our pilot results lead us to the hypothesis that forward masking in electrical hearing is minimized by the use of pulse rates that exceed maximum rates for entrainment of brainstem auditory structures.
Specific Aim 3 will quantify plasticity in transmission of temporal information resulting from deafening and chronic stimulation. We will test the hypothesis that temporal acuity of central structures improves during the first 30 days of cochlear-implant stimulation.
The aims of this study have direct application to deaf patients who use cochlear implants, particularly through influencing design of speech processors.
Aim 1 will identify factors that maximize the number of prosthesis channels that transmit non-redundant temporal information.
Aim 2 will identify factors that can restore forward masking to levels typical of normal hearing.
Aim 3 will identify changes in the central auditory pathway that result from deafness and chronic electrical stimulation and, thus, will inform decisions regarding age of implantation and patterns of chronic stimulation.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
5R01DC004312-11
Application #
7738924
Study Section
Auditory System Study Section (AUD)
Program Officer
Miller, Roger
Project Start
2000-01-01
Project End
2010-11-30
Budget Start
2009-12-01
Budget End
2010-11-30
Support Year
11
Fiscal Year
2010
Total Cost
$231,317
Indirect Cost
Name
University of California Irvine
Department
Otolaryngology
Type
Schools of Medicine
DUNS #
046705849
City
Irvine
State
CA
Country
United States
Zip Code
92697
Zhou, Ning; Xu, Li; Pfingst, Bryan E (2012) Characteristics of detection thresholds and maximum comfortable loudness levels as a function of pulse rate in human cochlear implant users. Hear Res 284:25-32
Kirby, Alana E; Middlebrooks, John C (2012) Unanesthetized auditory cortex exhibits multiple codes for gaps in cochlear implant pulse trains. J Assoc Res Otolaryngol 13:67-80
Pfingst, Bryan E (2011) Effects of electrode configuration on cochlear implant modulation detection thresholds. J Acoust Soc Am 129:3908-15
Pfingst, Bryan E; Colesa, Deborah J; Hembrador, Sheena et al. (2011) Detection of pulse trains in the electrically stimulated cochlea: effects of cochlear health. J Acoust Soc Am 130:3954-68
Garadat, Soha N; Pfingst, Bryan E (2011) Relationship between gap detection thresholds and loudness in cochlear-implant users. Hear Res 275:130-8
Pfingst, Bryan E; Bowling, Sara A; Colesa, Deborah J et al. (2011) Cochlear infrastructure for electrical hearing. Hear Res 281:65-73
Bierer, Julie Arenberg; Bierer, Steven M; Middlebrooks, John C (2010) Partial tripolar cochlear implant stimulation: Spread of excitation and forward masking in the inferior colliculus. Hear Res 270:134-42
Kang, Stephen Y; Colesa, Deborah J; Swiderski, Donald L et al. (2010) Effects of hearing preservation on psychophysical responses to cochlear implant stimulation. J Assoc Res Otolaryngol 11:245-65
Kirby, Alana E; Middlebrooks, John C (2010) Auditory temporal acuity probed with cochlear implant stimulation and cortical recording. J Neurophysiol 103:531-42
Su, Gina L; Colesa, Deborah J; Pfingst, Bryan E (2008) Effects of deafening and cochlear implantation procedures on postimplantation psychophysical electrical detection thresholds. Hear Res 241:64-72

Showing the most recent 10 out of 23 publications