Vocal cord oscillation is governed by the biomechanical properties of the tissue. These biomechanical properties, such as viscosity and elasticity are inherent in the extracellular matrix (ECM) of the vocal fold lamina propria. The composition of the ECM is controlled mainly by the fibroblast. Current theories support factors, and forces felt by the fibroblast. Management of the ECM may be accomplished by manipulation of the factors that effect the fibroblast, or directly changing the CM with injectable or implantable agents or materials. This proposal investigates the effect of forces on the fibroblast and ECM, selects agents for injection into the ECM that optimally influence the biomechanics of the vocal fold, and lays the groundwork for creating implantable, artificial matrices with favorable ECM properties for vocal tissue oscillation. Vocal tissue engineering, in a broad sense, includes, many possible methods that ultimately lead to tissues that has been preticatble created or influenced for a designated functional purpose. This proposal investigates areas that will potentially lead to three future clinical treatments that may predictably manage the biomechanical properties of the vocal flood by changing the composition of the ECM or replacing the ECM. These eventual areas are: 1) specific speech therapy exercises designed to expose the fibroblast to forces that lead to a remodeling of the ECM; 2) infections to manipulate the fibroblast and/or ECM, and 4) combinations of these.
Showing the most recent 10 out of 131 publications