Acetylcholine is a neurotransmitter that plays a role in many aspects of hearing, including selective attention, learning, frequency selectivity, sound localization, and discrimination of speech sounds. It also plays a critical role in helping the bran adapt during normal development, during aging and in response to damage of the ear or central nervous system. The long term goal of this research is to understand how cholinergic inputs to brainstem auditory circuits contribute to these tasks. Recent studies have identified 4 different cholinergic systems that innervate the brainstem auditory pathways. These cholinergic systems have different functions such as arousal, setting neuronal sensitivity, or controlling the flow of auditory information (e.g., to determine whether an acoustic stimulus is consciously perceived). A major obstacle to understand cholinergic functions in the brainstem has been lack of information about which cholinergic sources contact which auditory pathways. The objective of this proposal is to identify brainstem auditory circuits that are major targets of specific brainstm cholinergic projection systems. The experiments will use recently developed viral vectors and genetically-engineered (transgenic) rats to label cholinergic circuits from identified sources. These techniques will be combined with multi-labeling anatomical tracers and immunochemistry to identify the components and synaptic organization of specific auditory circuits targeted by the cholinergic systems.
The Aims focus on two brainstem areas that show high levels of cholinergic innervation: the ventral cochlear nucleus (VCN) and the inferior colliculus (IC). Together, these 2 areas process nearly all auditory information and thus contribute to all aspects of auditory function.
Aim 1 will focus on the VCN, a region that receives direct input from the ear and that gives rise to multiple pathways to higher centers. The experiments will identify cholinergic inputs to specific ascending pathways.
Aims 2 and 3 will focus on the IC, the largest brainstem auditory center and a major hub for integration of auditory information.
Aim 2 will identify specific cell types in the IC that are targeted by cholinergic inputs.
Aim 3 will idetify the circuits within the IC that are likely to be modulated by the cholinergic inputs and that could control how auditory information is processed within this integrative center. Overall, results from the three Aims will move the field forward by providing essential information for designing and interpreting future experiments with optogenetics, physiology and behavior to better understand cholinergic roles in normal hearing, during development, learning and aging and after damage to the cochlea or central auditory system.

Public Health Relevance

Acetylcholine is a neurotransmitter that plays critical roles in normal hearing and helps the brain to adapt during development, learning and aging and after damage to the nervous system. Understanding these functions is critical for developing approaches to help people with age-related hearing loss, difficulty understanding speech in noisy environments, learning to hear with cochlear implants or coping with hearing dysfunctions in disorders such as autism or schizophrenia. The present proposal will answer critical questions about the circuitry that underlies cholinergic functions.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
5R01DC004391-20
Application #
9993496
Study Section
Auditory System Study Section (AUD)
Program Officer
Poremba, Amy
Project Start
1999-07-01
Project End
2021-08-31
Budget Start
2020-09-01
Budget End
2021-08-31
Support Year
20
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Northeast Ohio Medical University
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
077779882
City
Rootstown
State
OH
Country
United States
Zip Code
44272
Schofield, Brett R; Beebe, Nichole L (2018) Subtypes of GABAergic cells in the inferior colliculus. Hear Res :
Mellott, Jeffrey G; Beebe, Nichole L; Schofield, Brett R (2018) Bilateral projections to the thalamus from individual neurons in the inferior colliculus. J Comp Neurol :
Beebe, Nichole L; Schofield, Brett R (2018) Perineuronal nets in subcortical auditory nuclei of four rodent species with differing hearing ranges. J Comp Neurol 526:972-989
Mellott, Jeffrey G; Beebe, Nichole L; Schofield, Brett R (2018) GABAergic and non-GABAergic projections to the superior colliculus from the auditory brainstem. Brain Struct Funct 223:1923-1936
Crish, Samuel D; Schofield, Brett R (2018) Anterograde Tract Tracing for Assaying Axonopathy and Transport Deficits in Glaucoma. Methods Mol Biol 1695:171-185
Beebe, Nichole L; Young, Jesse W; Mellott, Jeffrey G et al. (2016) Extracellular Molecular Markers and Soma Size of Inhibitory Neurons: Evidence for Four Subtypes of GABAergic Cells in the Inferior Colliculus. J Neurosci 36:3988-99
Smith, Matthew A; Xia, Christina Z; Dengler-Crish, Christine M et al. (2016) Persistence of intact retinal ganglion cell terminals after axonal transport loss in the DBA/2J mouse model of glaucoma. J Comp Neurol 524:3503-3517
Foster, Nichole L; Mellott, Jeffrey G; Schofield, Brett R (2014) Perineuronal nets and GABAergic cells in the inferior colliculus of guinea pigs. Front Neuroanat 7:53
Mellott, Jeffrey G; Foster, Nichole L; Ohl, Andrew P et al. (2014) Excitatory and inhibitory projections in parallel pathways from the inferior colliculus to the auditory thalamus. Front Neuroanat 8:124
Mellott, Jeffrey G; Bickford, Martha E; Schofield, Brett R (2014) Descending projections from auditory cortex to excitatory and inhibitory cells in the nucleus of the brachium of the inferior colliculus. Front Syst Neurosci 8:188

Showing the most recent 10 out of 43 publications