The question of how and where language is represented in the brain has been an area of intense investigation for more than a century. The various methodologies that have addressed this question each have their own limitations, and the various methodologies have yielded divergent answers. However, some conclusions have been robust across investigations: (1) a given language task (say, naming a picture) requires a number of distinct processes or levels of mental representation; (2) there is some specialization across cortical regions, such that each distinct level of processing may take place in separate brain regions; thus, a whole network of regions might subserve the task; (3) these structure/function relationships are fairly similar across most individuals, but can change in response to brain damage. Yet, there are many unanswered questions. What are the precise areas that are either necessary or sufficient for any given language process? How fine-grained are the structure/function relationships with respect to language in the brain? That is, for any given level of representation, such as a lexical (word form) representation, are there distinct regions for different types of words (e.g., nouns versus verbs) and/or for different output modalities (e.g., spoken versus written) for the same word? The goal of this project is to address these questions with a novel approach utilizing MR perfusion weighted imaging (PWI) and diffusion weighted imaging (DWI), along with testing of language processing at the same time, in subjects <24 hours post onset of stroke. The major hypothesis is that PWI and DWI with concurrent language testing can reveal areas of neural dysfunction, with or without structural damage, associated with disruption of each level of representation underlying lexical tasks such as naming, reading, or spelling a word. The imaging and language tests together are expected to show that there are distinct areas of cortex that are essential for the processing of phonological representations (or spoken word forms) versus orthographic representations (or written word forms), and that the regions are specific to a particular grammatical word class (e.g., nouns versus verbs). It is also predicted that still other regions are crucial for representing the meanings of various types of words, or for more peripheral components of speech or written output for all types of words. It is also hypothesized that repeat DWI, PWI, and language tests at 3 days post-onset will reveal mechanisms of early recovery of lexical functions in acute stroke.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
1R01DC005375-01
Application #
6458689
Study Section
Biobehavioral and Behavioral Processes 3 (BBBP)
Program Officer
Cooper, Judith
Project Start
2002-07-01
Project End
2007-06-30
Budget Start
2002-07-01
Budget End
2003-06-30
Support Year
1
Fiscal Year
2002
Total Cost
$334,429
Indirect Cost
Name
Johns Hopkins University
Department
Neurology
Type
Schools of Medicine
DUNS #
045911138
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Long, Charltien; Sebastian, Rajani; Faria, Andreia V et al. (2018) Longitudinal Imaging of Reading and Naming Recovery after Stroke. Aphasiology 32:839-854
Hillis, Argye E; Beh, Yuan Ye; Sebastian, Rajani et al. (2018) Predicting recovery in acute poststroke aphasia. Ann Neurol 83:612-622
Ficek, Bronte N; Wang, Zeyi; Zhao, Yi et al. (2018) The effect of tDCS on functional connectivity in primary progressive aphasia. Neuroimage Clin 19:703-715
Tippett, Donna C; Godin, Brittany R; Oishi, Kumiko et al. (2018) Impaired Recognition of Emotional Faces after Stroke Involving Right Amygdala or Insula. Semin Speech Lang 39:87-100
Tippett, Donna C (2018) Acute Care Management of Stroke. Semin Speech Lang 39:1-2
Shahid, Hinna; Sebastian, Rajani; Tippett, Donna C et al. (2018) Regional Brain Dysfunction Associated with Semantic Errors in Comprehension. Semin Speech Lang 39:79-86
Trupe, Lydia A; Mulheren, Rachel W; Tippett, Donna et al. (2018) Neural Mechanisms of Swallowing Dysfunction and Apraxia of Speech in Acute Stroke. Dysphagia 33:610-615
Purcell, Jeremy; Sebastian, Rajani; Leigh, Richard et al. (2017) Recovery of orthographic processing after stroke: A longitudinal fMRI study. Cortex 92:103-118
Hillis, Argye E; Rorden, Christopher; Fridriksson, Julius (2017) Brain regions essential for word comprehension: Drawing inferences from patients. Ann Neurol 81:759-768
Agis, Daniel; Hillis, Argye E (2017) The cart before the horse: When cognitive neuroscience precedes cognitive neuropsychology. Cogn Neuropsychol 34:420-429

Showing the most recent 10 out of 97 publications