The broad, long term objectives of this project are to discover how neurons in the brain encode information about taste stimuli. Since the taste of food is a major determinant of food intake, this knowledge is an important foundation for understanding abnormalities of food intake, e.g. anorexia, obesity, etc. In addition, the study of how neurons convey information is crucial to the rational design of sensory prosthetics. To further our understanding of taste processing, the present project is focused on temporal coding in the nucleus of the solitary tract (NTS) and the parabrachial nucleus of the pons (PbN), respectively the first and second central relays in the rat taste system. HYPOTHESES are 1) Temporal characteristics of cooperative firing patterns among taste-responsive and mechanosensitive neurons in the NTS provide the basis for rapid assessment of taste stimuli 2) PbN activity will mirror activity of NTS cells in the initial response interval for all tastants, but become progressively more decorrelated as the response unfolds over time. Further, we propose that distinctions between hedonically positive and negative tastants will become more definitive in the later portions of the response. 3) The temporal patterns of taste responses in the PbN are both necessary and sufficient to convey a taste sensation of an identifiable quality. 4) Electrical stimulation of the waist area will evoke a taste-like sensation, but stimulation of the external lateral nucleus will evoke avoidance without a specifiable taste quality.
SPECIFIC AIMS : 1) Information contributed by temporal coding will be quantified by analyses of electrophysiological responses to taste stimuli recorded from ensembles of NTS cells in awake, behaving rats Taste stimuli and their binary mixtures, as well as tastants at varying concentrations will be presented. 2) Taste responses will be recorded simultaneously from ensembles of neurons in the NTS and PbN of awake behaving rats and the transfer of information between these two structures will be characterized. 3) Generalization of a conditioned aversion to lick-contingent electrical stimulation of the PbN will be used to a) demonstrate that the temporal pattern of electrical stimulation can mimic the perceptual properties and behavioral reactivity of either quinine or sucrose and b) construct a temporal sequence of electrical pulses which incorporates the critical features of the temporal pattern of electrical stimulation that, when used to drive activity in the PbN, will evoke specific taste sensations and appropriate behavioral reactions. We will electrically stimulate the waist area and external lateral subnuclei of the PbN in awake rats with pulse trains that mimic the PbN response to quinine (quinine simulation) or sucrose (sucrose simulation).

Public Health Relevance

Since the sense of taste is at the core of our decisions of what to eat and what not to eat, the study of how the brain processes taste will advance our understanding of how these decisions are made and how they can go awry, as in obesity, for example, and adversely affect our health. In addition, the results of our proposed studies will provide basic principles about how neurons in the brain convey information about the world around us. These principles can then be applied to the design and implementation of brain-machine interfaces, such as sensory prostheses that are used to improve the lives of people with severe injuries to their limbs or spinal cord.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
5R01DC006914-10
Application #
8765715
Study Section
Somatosensory and Chemosensory Systems Study Section (SCS)
Program Officer
Sullivan, Susan L
Project Start
2005-12-12
Project End
2016-09-25
Budget Start
2014-12-01
Budget End
2016-09-25
Support Year
10
Fiscal Year
2015
Total Cost
Indirect Cost
Name
State University of NY, Binghamton
Department
Psychology
Type
Schools of Arts and Sciences
DUNS #
090189965
City
Binghamton
State
NY
Country
United States
Zip Code
13902
Sammons, Joshua D; Weiss, Michael S; Victor, Jonathan D et al. (2016) Taste coding of complex naturalistic taste stimuli and traditional taste stimuli in the parabrachial pons of the awake, freely licking rat. J Neurophysiol 116:171-82
Escanilla, Olga D; Victor, Jonathan D; Di Lorenzo, Patricia M (2015) Odor-taste convergence in the nucleus of the solitary tract of the awake freely licking rat. J Neurosci 35:6284-97
Weiss, Michael S; Victor, Jonathan D; Di Lorenzo, Patricia M (2014) Taste coding in the parabrachial nucleus of the pons in awake, freely licking rats and comparison with the nucleus of the solitary tract. J Neurophysiol 111:1655-70
Rosen, Andrew M; Di Lorenzo, Patricia M (2012) Neural coding of taste by simultaneously recorded cells in the nucleus of the solitary tract of the rat. J Neurophysiol 108:3301-12
Weiss, Michael S; Di Lorenzo, Patricia M (2012) Not so fast: taste stimulus coding time in the rat revisited. Front Integr Neurosci 6:27
Roussin, Andre T; D'Agostino, Alexandra E; Fooden, Andrew M et al. (2012) Taste coding in the nucleus of the solitary tract of the awake, freely licking rat. J Neurosci 32:10494-506
Rosen, Andrew M; Victor, Jonathan D; Di Lorenzo, Patricia M (2011) Temporal coding of taste in the parabrachial nucleus of the pons of the rat. J Neurophysiol 105:1889-96
Chen, Jen-Yung; Victor, Jonathan D; Di Lorenzo, Patricia M (2011) Temporal coding of intensity of NaCl and HCl in the nucleus of the solitary tract of the rat. J Neurophysiol 105:697-711
Rosen, Andrew M; Roussin, Andre T; Di Lorenzo, Patricia M (2010) Water as an independent taste modality. Front Neurosci 4:175
Chen, Jen-Yung (2010) A simulation study investigating the impact of dendritic morphology and synaptic topology on neuronal firing patterns. Neural Comput 22:1086-111

Showing the most recent 10 out of 19 publications