This proposed research will seek to investigate the role of specific lymphoid host cells in the establishment and maintenance of experimental periodontal disease in normal and immunologically compromised rodent hosts. We will explore the shifts in specific cell populations and subpopulations during the establishment and progression of experimental periodontal disease in normal and athymic rats using monoclonal antibodies and flow cytofluorometric techniques. We will also investigate the activation state of these subtypes in developing peridontal disease lesions which should provide information on the sequence of cell activity and the roles of the various cell subtypes. We have proposed to explore the nature of these cell roles with an experimental sequence involving adoptive transfer after the use of specific T cell cloning methodology. Specific subpopulations of cloned antigen specific T lymphocytes will be adoptively transferred into immunologically compromised and normal rodent hosts. Further, studies of antigen-studies of antigen-specific B cells, adoptively transferred into normal and immunologically compromised rodent hosts (congenitally athymic) will evaluate the role of antibody and bone resorptive factors in periodontal disease. The methodology employed will utilize monoclonal antibodies as recognition factors and for separation of selected cell population. Analytical procedures will involve flow cytofluorometry, ELISA assay, blastogenic and plaque forming cell assays. The proposal holds promise to enhance understanding of regulatory cell involvement in periodontal disease. Specific promising procedures to ameliorate periodontal disease will be tested.

Agency
National Institute of Health (NIH)
Institute
National Institute of Dental & Craniofacial Research (NIDCR)
Type
Research Project (R01)
Project #
5R01DE003420-15
Application #
3218858
Study Section
Oral Biology and Medicine Study Section (OBM)
Project Start
1976-02-01
Project End
1990-06-30
Budget Start
1988-07-01
Budget End
1989-06-30
Support Year
15
Fiscal Year
1988
Total Cost
Indirect Cost
Name
Forsyth Institute
Department
Type
DUNS #
City
Cambridge
State
MA
Country
United States
Zip Code
02142
Movila, Alexandru; Kajiya, Mikihito; Wisitrasameewong, Wichaya et al. (2018) Intravital endoscopic technology for real-time monitoring of inflammation caused in experimental periodontitis. J Immunol Methods 457:26-29
Kanzaki, Hiroyuki; Movila, Alexandru; Kayal, Rayyan et al. (2017) Phosphoglycerol dihydroceramide, a distinctive ceramide produced by Porphyromonas gingivalis, promotes RANKL-induced osteoclastogenesis by acting on non-muscle myosin II-A (Myh9), an osteoclast cell fusion regulatory factor. Biochim Biophys Acta Mol Cell Biol Lipids 1862:452-462
Kanzaki, Hiroyuki; Shinohara, Fumiaki; Suzuki, Maiko et al. (2016) A-Disintegrin and Metalloproteinase (ADAM) 17 Enzymatically Degrades Interferon-gamma. Sci Rep 6:32259
Kanzaki, Hiroyuki; Makihira, Seicho; Suzuki, Maiko et al. (2016) Soluble RANKL Cleaved from Activated Lymphocytes by TNF-?-Converting Enzyme Contributes to Osteoclastogenesis in Periodontitis. J Immunol 197:3871-3883
Matsuda, Shinji; Movila, Alexandru; Suzuki, Maiko et al. (2016) A novel method of sampling gingival crevicular fluid from a mouse model of periodontitis. J Immunol Methods 438:21-25
Lin, Jiang; Bi, Liangjia; Yu, Xiaoqian et al. (2014) Porphyromonas gingivalis exacerbates ligature-induced, RANKL-dependent alveolar bone resorption via differential regulation of Toll-like receptor 2 (TLR2) and TLR4. Infect Immun 82:4127-34
Han, Xiaozhe; LaRosa, Karen B; Kawai, Toshihisa et al. (2014) DNA-based adaptive immunity protect host from infection-associated periodontal bone resorption via recognition of Porphyromonas gingivalis virulence component. Vaccine 32:297-303
Gaffen, S L; Herzberg, M C; Taubman, M A et al. (2014) Recent advances in host defense mechanisms/therapies against oral infectious diseases and consequences for systemic disease. Adv Dent Res 26:30-7
Yu, Xiaoqian; Lin, Jiang; Yu, Qing et al. (2014) Activation of Toll?like receptor 9 inhibits lipopolysaccharide?induced receptor activator of nuclear factor kappa? B ligand expression in rat B lymphocytes. Microbiol Immunol 58:51-60
Han, Xiaozhe; Lin, Xiaoping; Yu, Xiaoqian et al. (2013) Porphyromonas gingivalis infection-associated periodontal bone resorption is dependent on receptor activator of NF-?B ligand. Infect Immun 81:1502-9

Showing the most recent 10 out of 19 publications